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Recall: Variational Autoencoder (VAE)
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Problem Set 9: Lossless Compression With a VAE
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Today: Lossy Compression With a VAE
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VAEs for Lossy (Image) Compression
� Example: data X = (Xi ,j ,k) are color images.

� (i , j , k) = (x-position, y-position, red/green/blue); Xi ,j ,k ∈ [0, 1] is a (continuous) RGB value
� Likelihood is again parameterized by a neural network gθ: Pθ(X | Z) = �

i Pθ(Xi ,j ,k | Z)
� This time: Gaussian likelihood, i.e., density function pθ(xi ,j ,k | Z=z) = N (xi ,j ,k ; gθ(z)i ,j ,k , β

2 I)

� Idea: just use gθ(z) as the reconstruction of an image.
(Don’t bother using the likelihood Pθ(X | Z=z) to encode the true image.)

� ELBOβ(θ, φ, x) =
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Quantizing Latent Space
� Latents z ∈ Rd are continuous =⇒ can’t be entropy coded
� Problem 9.2: for lossless compression with bits-back coding,

we can simply quantize z to an arbitrarily fine grid.
DKL

�
Qφ(Z | X=x)

����
���� Pθ(Z)

�
= EQφ(Z | X=x)

�
log qφ(Z | X=x) − log pθ(Z)

�

� bit rate for encoding ẑ = �z�δ with quantized prior Pθ(Ẑ):
� bit rate for decoding ẑ with quantized var. dist. Qφ(Ẑ | X=x):

=⇒ for δ → 0, expected net bit rate is DKL
�
Qφ(Z | X=x)

����
���� Pθ(Z)

�
(independent of δ)

� Problem: bits-back coding does not work (out of the box) for lossy compression.
� Receiver never recovers the exact message x =⇒ can’t encode ẑ with Qφ(Ẑ | X=x).
� Thus, bit rate would depend on how fine we make the grid.
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Simplest Solution: Uniform Quantization [Ballé et al., 2017]

� Idea: take quantization into account already during training.
� Goal: model should learn to encode important information on length scales ≥ δ.
� Problem: quantization z �→ ẑ := �z�δ is not differentiable.
� Observation: (ẑ − z) ∈

�
− δ

2, δ
2

�d and (empirically) approximately uniformly distributed.

� Proposal: at training, replace quantization by adding uniform noise � ∼ U
��

− δ
2, δ

2
�d �

� Equivalent to using a box-shaped variational distribution with fixed width:

� δ is fixed (i.e., data-independent)
=⇒ might as well set δ = 1 as long as the prior Pθ(Z) does not impose any fixed length scale.

=⇒ at deployment, encode each component ẑi := �zi�Z with model Pθ(Ẑi = ẑi) =

=⇒ bit rate − log Pθ(Ẑ= ẑ) =
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Model Training: Rate/Distortion Trade-Off

� In deployment:

� quantized latent representation: ẑ := �z� = �fφ(x)�
� bit rate: − log Pθ(Ẑ= ẑ) = − log

�
�
z∈

�
ẑ− 1

2 ,ẑ+ 1
2
� pθ(z) dz

�

� reconstructed message: x� = gθ(ẑ)

� At training time:

� added uniform noise: z = fφ(x) + � where � ∼ U
��

− 1
2, 1

2
�d �

� approximated bit rate: R(θ, φ, x) := − log p̃θ(z) where p̃θ(z) := �
z�∈

�
z− 1

2 ,z+ 1
2
� pθ(z�) dz�

� reconstruction error (distortion): e.g., MSE: D(θ, φ, x) :=
���
���g(z) − x

���
���
2
2

� loss function: rate/distortion trade off: Lβ(θ, φ, x) = E�

�
β R(θ, φ, x) + D(θ, φ, x)

�

−→ Problem 10.1: ∃ probabilistic model such that Lβ(θ, φ, x) ∝ −ELBO(θ, φ, x) + const
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Limitations of Uniform Quantization
� quantization gap: rounding �= adding uniform noise.

� various proposals exist for better quantization at training time (→ Lecture 12)

� rate/distortion trade-off β must be set at training time.
� less studied in the literature.
� variational inference can help: [Yang et al., 2020, Tan & Bamler, 2022]
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Recall: Source Coding Theorem
� optimal expected bit rate of lossless compression: entropy H [X]
� we proved that H [X] is both:

� a lower bound: E[bitrate(X)] ≥ H [X] = E[− log P(X)] ∀ lossless codes
� achievable with negligible overhead: ∃ lossless code : bitrate(x) < − log P(x) + 1 ∀ x

� Lossy compression can have bit rates < H [X].
� today and problem set: lower bound
� next week: achievability of lower bound
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Lower Bound on the Bit Rate of Lossy Compression
� Encoder/decoder form a Markov chain:

� Problem 10.3: data processing inequality:
∀ Markov chains X1 → X2 → X3:

� Thus, lower bound on expected bit rate:
� consider data source P(X) and fixed mapping P(X� | X) from messages to reconstructions;
� encoder P(S | X) and decoder P(X� | S) satisfy:
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