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Recall: Source Coding Theorem
I optimal expected bit rate of lossless compression: entropy H [X]
I we proved that H [X] is both:

I a lower bound: E[bitrate(X)] ≥ H [X] = E[− log P(X)] ∀ lossless codes
I achievable with negligible overhead: ∃ lossless code : bitrate(x) < − log P(x) + 1 ∀ x

I Today: lossy compression can have bit rates < H [X].
But there is still a lower bound.

1. lower bound: easy to prove
2. achievability of lower bound: via a detour through channel coding
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Lower Bound on the Bit Rate of Lossy Compression
I Encoder/decoder form a Markov chain:

I Problem 10.3: data processing inequality:
∀ Markov chains X1 → X2 → X3:

I Thus, lower bound on expected bit rate:
I consider data source P(X) and fixed mapping P(X′ | X) from messages to reconstructions;
I encoder P(S | X) and decoder P(X′ | S) satisfy:
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Poll
I Assume we want to transmit a message x ∈ {0, 1}k of k independent and uniformly

distributed bits over a channel.
I The channel can only transmit a string of n < k bits without error.
I How many of the n bits in the message should we expect to be corrupted, in expectation?
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Channel Coding
I Recap from very first lecture:

sender receiver
︷ ︸︸ ︷ ︷ ︸︸ ︷

message −−→ source
coding −−→ channel

coding −−→ channel −−→ channel
coding −−→ source

coding −−→ reconstructed
message

needs:
• prob. model

of data source
• distortion

metric

needs:
• prob. model

of channel

needs:
• prob. model

of channel

needs:
• prob. model

of data source
• (distortion

metric)
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Error Correction: Intuition
I Assume we want to transmit a message x ∈ {0, 1}k of k independent and uniformly

distributed bits over a channel.
I We have a channel that transmits bits ∈ {0, 1}, but it flips each bit with some

probability f (independently of each ohter).
I Question 1: what is the probability that the message is transmitted without error?

For example, consider a 1 megabit message and error probability f = 0.001 %.

I Question 2: now consider a simple channel coding scheme: the each bit is transmitted
three times; the receiver then takes a majority vote of the three bits. What is now the
probability to receive the message without error in the above example?
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(Noisy) Channel Coding Theorem
Claim: we can do a lot better than replicating each bit three times:

S channel encoder−−−−−−−−−−−→
P(Y|X)

Y memoryless channel−−−−−−−−−−−−−→∏n
i=1 P(Yi |Xi)

Y′ channel decoder−−−−−−−−−−−→
P(X′|Y)

S′

I For a memoryless Channel P(Y | X) =
n∏

i=1
P(Yi | Xi), let the channel capacity be:

C := sup
P(Xi)

IP(Xi ; Yi).

I Then: in the limit of long messages (n � 1), there exists a channel coding scheme that
satisfies both of the following:

I the ratio k
n can be made arbitrarily close to C ; and

I the error probability P(S 6=S′) can be made arbitrarily small for all s ∈ {0, 1}k .
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Intuition: Block Error Correction
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Prerequisite 1 of 2: Chebychev’s Inequality
I Let X be a nonnegative (discrete or continuous) scalar random variable with a finite

expectation EP [X ]. Then:

P(X ≥ β) ≤ EP [X ]
β ∀β > 0.

I Proof:
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Prerequisite 2 of 2: Weak Law of Large Numbers
I Let X1, . . . , Xn be independent random variables, all with the same expectation value

µ := EP [Xi ], and with the same (finite) variance σ2 := EP
[
(Xi − µ)2

]
< ∞.

I Denote the empirical mean of all Xi as 〈Xi〉i := 1
n

∑n
i=1 Xi

(thus, 〈Xi〉i is itself a random variable).

I Then: P
(∣∣∣∣〈Xi〉i − µ

∣∣∣∣ ≥ β
)

≤ σ2

nβ2 ∀β > 0.

I Proof:
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Implications on Information Content
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What are “Typical” Messages?
Last Slide: P

(∣∣∣∣
− log2 P(X)

n − HP [Xi ]
∣∣∣∣ ≥ β

)
≤ O

( 1
nβ2

)
∀β > 0

I Thus, for “most” long random messages, the information content per symbol is close to
the entropy of a symbol.

I Define the typical set TP(Xi),n,β as the set of messages of length n whose information
content per symbol deviates from the entropy of a symbol by less than some given
threshold β:
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Examples of Typical Sets
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Size of the Typical Set
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Application to Channel Coding
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Understanding Joint Typicality
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Random Channel Codes
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Proof
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Proof of the Noisy Channel Coding Theorem
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Recall: Poll
I Assume we want to transmit a message x ∈ {0, 1}k of k independent and uniformly

distributed bits over a channel.
I The channel can only transmit a string of n < k bits without error.
I How many of the n bits in the message should we expect to be corrupted, in expectation?
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Application to Lossy Data Compression
sender receiver

︷ ︸︸ ︷ ︷ ︸︸ ︷

message −−→ source
coding −−→ channel

coding −−→ channel −−→ channel
coding −−→ source

coding −−→ reconstructed
message

needs:
• prob. model

of data source
• distortion

metric

needs:
• prob. model

of channel

needs:
• prob. model

of channel

needs:
• prob. model

of data source
• (distortion

metric)
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Achievability of the Lower Bound (1 of 2)
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Achievability of the Lower Bound (2 of 2)
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Source/Channel Separation Theorem
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