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Recall: Lower Bound on the Rate/Distortion Curve
I Encoder/decoder form a Markov chain:

message X encoder−−−−−−−→
P(S|X)

bit string S decoder−−−−−−−→
P(X′|S)

reconstruction X′

=⇒ By data processing inequality:
IP(X; X′) ≤ IP(X; S) = HP(S) − HP(S | X) ≤ HP(S) ≤ bit rate

I Typical formulation in the literature:
I Consider distortion metric d : X × X → R≥0 and distortion threshold D
I Then, all lossy compression codes that satisfy EP

[
d(X, X′)

]
≤ D have:

bit rate ≥ R(D) with the rate/distortion curve: R(D) ≥ inf
P(X,X′):

EP [d(X,X′)]≤D

IP(X; X′)

I Today: finish proof that this lower bound is (almost) achievable
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Channel Coding
I Recap from very first lecture:

sender receiver
︷ ︸︸ ︷ ︷ ︸︸ ︷

message −−→ source
coding −−→ channel

coding −−→ channel −−→ channel
coding −−→ source

coding −−→ reconstructed
message

needs:
• prob. model

of data source
• distortion

metric

needs:
• prob. model

of channel

needs:
• prob. model

of channel

needs:
• prob. model

of data source
• (distortion

metric)
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Intuition: Block Error Correction

S ∈ {0, 1}n channel encoder−−−−−−−−−−→
P(Y|X)

X ∈ X k memoryless channel−−−−−−−−−−−−→∏k
i=1 P(Yi |Xi)

Y′ ∈ Yk channel decoder−−−−−−−−−−→
P(X′|Y)

S′ ∈ {0, 1}n

Examples:
(X = Y = {0, 1})

S Y
“0” “000”
“1” “111”

=⇒

S Y
“00” “000000”
“01” “000111”
“10” “111000”
“11” “111111”

better:

S Y
“00” “00000”
“01” “00111”
“10” “11100”
“11” “11111”

I Assume that the channel flips symbols with probability f � 1.
I Both codes can recover a bit string of length N if at most 1 symbol per K -block is flipped.

=⇒ for |S| = N : P(S′ =S) = (1 − f )K + Kf (1 − f )K−1 ≈ 1 −
(K

2
)
f 2 + O(f 3)

=⇒ for a sequence of n � N bits:
P(S′ =S) ≈

(
1 −

(K
2

)
f 2

)n/N = exp
[ n
N ln

(
1 −

(K
2

)
f 2

)]
≈ exp

[
−

(K
2

) f 2

N n
]
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(Noisy) Channel Coding Theorem

S ∈ {0, 1}n channel encoder−−−−−−−−−−→
P(Y|X)

X ∈ X k memoryless channel−−−−−−−−−−−−→∏k
i=1 P(Yi |Xi)

Y′ ∈ Yk channel decoder−−−−−−−−−−→
P(X′|Y)

S′ ∈ {0, 1}n

I Goal: transmit a bit string S that is as long as possible using the channel as little as
possible and recover original bit string with high probability.
=⇒ we want: large n, small k , and high P(S=S′)

I For a memoryless channel P(Y | X) =
k∏

i=1
P(Yi | Xi), let the channel capacity be:

C := sup
P(Xi)

IP(Xi ; Yi).

I Theorem: in the limit of long messages (n � 1), there exists a channel coding scheme
that satisfies both of the following:

I the ratio n
k can be made arbitrarily close to the channel capacity C ; and

I the error probability P(S′ 6= s | S=s) can be made arbitrarily small for all s ∈ {0, 1}n.
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Prerequisite 1 of 2: Chebychev’s Inequality
I Let X be a nonnegative (discrete or continuous) scalar random variable with a finite

expectation EP [X ]. Then:

P(X ≥ β) ≤ EP [X ]
β ∀β > 0.

I Proof:
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Prerequisite 2 of 2: Weak Law of Large Numbers
I Let X1, . . . , Xk be independent random variables, all with the same expectation value

µ := EP [Xi ], and with the same (finite) variance σ2 := EP
[
(Xi − µ)2

]
< ∞.

I Denote the empirical mean of all Xi as 〈Xi〉i := 1
n

k∑

i=1
Xi

(thus, 〈Xi〉i is itself a random variable).

I Then: P
(∣∣∣∣〈Xi〉i − µ

∣∣∣∣ ≥ β
)

≤ σ2

kβ2 ∀β > 0.

I Proof:
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Implications on Information Content
I Consider a data source of messages X = (X1, . . . , Xk) where all Xi are i.i.d.
I The information content − log2 P(Xi) of a symbol is a random variable.

I Its expectation is the entropy of a symbol: EP [− log2 P(Xi)] = HP(Xi)

I Its empirical mean is: 〈− log2 P(Xi)〉i =

I Apply weak law of large numbers:

P
(∣∣∣∣

− log2 P(X)
k − HP(Xi)

∣∣∣∣ ≥ β
)

≤ O
(

σ2

kβ2

)
∀β > 0

(where σ2 is the variance of − log2 P(Xi))

“For long messages (i.e., k � 1), large deviations β between the
mean information content and the entropy per symbol are improbable.”
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What are “Typical” Messages?
I Last Slide: P

(∣∣∣∣
− log2 P(X)

k − HP(Xi)
∣∣∣∣ ≥ β

)
≤ O

(
σ2

kβ2

)
∀β > 0

“For most long random messages, the information content per symbol is close to HP(Xi).”
I Define the typical set TP(Xi),k ,β as the set of messages of length k whose information

content per symbol deviates from HP(Xi) by less than some given threshold β:

TP(Xi),k ,β :=


x ∈ X k that satisfty:

∣∣∣∣∣∣∣

− log2 P(X=x)
k − HP(Xi)

∣∣∣∣∣∣∣
< β





I Thus, by weak law of large numbers: P(X ∈ TP(Xi),k ,β) ≥
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Examples of Typical Sets

Consider sequences of binary symbols, X ∈ {0, 1}k with




P(Xi =1) = α;
P(Xi =0) = 1 − α.

(0 ≤ α ≤ 1)

I Entropy per symbol: HP(Xi) ≡ H2(α)
I Size of the full message space:

∣∣∣∣{0, 1}k
∣∣∣∣ = 2k

I If α = 1
2 then all messages x ∈ {0, 1}k have the same information content.

=⇒ All messages are typical: TP(Xi),k ,β = {0, 1}k ∀k, β > 0.
I But if α 6= 1

2 then, for long messages, significantly (exponentially) fewer messages are
typical:

∣∣∣∣TP(Xi),k ,β

∣∣∣∣ ≈ 2nH2(α) (see next slide)

=⇒ fraction of typical messages: |TP(Xi),k ,β|
|{0, 1}k |
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Size of the Typical Set

TP(Xi),k ,β :=


x ∈ X k that satisfty:

∣∣∣∣∣∣∣

− log2 P(X=x)
k − HP(Xi)

∣∣∣∣∣∣∣
< β





I Claim:
∣∣∣∣TP(Xi),k ,β

∣∣∣∣ < 2n(HP(Xi)+β)

I Proof:
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Application to Channel Coding

S ∈ {0, 1}n channel encoder−−−−−−−−−−→
P(Y|X)

X ∈ X k memoryless channel−−−−−−−−−−−−→∏k
i=1 P(Yi |Xi)

Y′ ∈ Yk channel decoder−−−−−−−−−−→
P(X′|Y)

S′ ∈ {0, 1}n

I Draw a message x ∈ X k for from some input distribution P(X) = ∏k
i=1 P(Xi)

I Transmit x over the channel =⇒ receive y ∼ P(Y | X=x)
I Thus:

I x ∼ P(X) and therefore:
I y ∼ P(Y) and therefore:
I (x, y) ∼ P(X, Y) = k∏

i=1
P(Xi)P(Yi |Xi) and therefore:

I We say that x and y are jointly typical: P
(
(x, y) ∈ JP(Xi ,Yi),k ,β

) k→∞−−−→ 1 ∀β > 0.
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Understanding Joint Typicality
I Compare the example on the last slide to a situation where x and y are drawn

independently from their respective marginal distributions, i.e.,
I x ∼ P(X); and
I y ∼ P(Y).

I Question: what is the probability that x and y are jointly tyipcal?
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Random Channel Codes

S ∈ {0, 1}n channel encoder−−−−−−−−−−→
P(Y|X)

X ∈ X k memoryless channel−−−−−−−−−−−−→∏k
i=1 P(Yi |Xi)

Y′ ∈ Yk channel decoder−−−−−−−−−−→
P(X′|Y)

S′ ∈ {0, 1}n

(Crazy) idea: assign random code words to bit strings:
I For each s ∈ {0, 1}n, draw a code word C(s) ∈ X k from P(X).
I Define a (deterministic) channel encoder: P(X=x | S=s, C) = δx,C(s).
I Channel decoder: map y to ŝ if (C(ŝ), y) ∈ JP(Xi ,Yi),k ,β for exactly one ŝ. Otherwise fail.
I Claim (Problem Set): In expectation over all random codes C that are constructed in this

way, and over all input strings s ∼ P(S) := Uniform({0, 1}k), the error probability for
long messages goes to zero as long as k

n < IP(Xi , Yi) − 3β.
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Proof of the Noisy Channel Coding Theorem
Theorem (reminder): for long messages (n � 1), there exists a channel coding scheme such
that n

k can be made arbitrarily close to the channel capacity C and the error probability
P(S′ 6= s | S=s) can be made arbitrarily small for all s ∈ {0, 1}n.

Robert Bamler · Lecture 12, Part 2 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 14



Proof (cont’d)
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Application to Lossy Data Compression
sender receiver

︷ ︸︸ ︷ ︷ ︸︸ ︷

message −−→ source
coding −−→ channel

coding −−→ channel −−→ channel
coding −−→ source

coding −−→ reconstructed
message

needs:
• prob. model

of data source
• distortion

metric

needs:
• prob. model

of channel

needs:
• prob. model

of channel

needs:
• prob. model

of data source
• (distortion

metric)
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