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Recall: Two Theorems That Are Awaiting Proofs
I Rate/Distortion Theorem: X −→ S ∈ {0, 1}n −→ X′

all lossy compression codes that satisfy EP [d(X, X′)] ≤ D have EP [bit rate] ≥ R(D)
with the rate/distortion curve:

R(D) := inf
P(X′|X):

EP [d(X,X′)]≤D

IP(X; X′)

I Channel Coding Theorem: S ∈ {0, 1}n −→ X ∈ X k −→ Y′ ∈ Yk −→ S′ ∈ {0, 1}n

In the limit of long messages (n � 1), there exists a channel coding scheme that satisfies
both of the following:

I the ratio n
k can be made arbitrarily close to the channel capacity C := sup

P(Xi)
IP(Xi ; Yi); and

I the error probability P(S′ 6= s | S=s) can be made arbitrarily small for all s ∈ {0, 1}n.
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Recall: Typicality and Joint Typicality
I Def. typical set: TP(Xi),k ,β :=

{
x ∈ X k that satisfty:

∣∣∣∣
− log2 P(X=x)

k − HP(Xi)
∣∣∣∣ < β

}

I most (long) messages are not typical:
∣∣∣TP(Xi),k,β

∣∣∣ < 2k(HP(Xi)+β) =⇒ |TP(Xi ),k,β |
|X k | < 2k(HP(Xi)−|X |+β)

I But: most (long) random messages are typical: P(X ∈ TP(Xi),k,β) ≥ 1 − σ2

kβ2
k→∞−−−→ 1

I Def. joint typicality:
(x, y) ∈ JP(Xi ,Yi),k ,β iff: x ∈ TP(Xi),k ,β, y ∈ TP(Yi),k ,β, and (x, y) ∈ TP(Xi ,Yi),k ,β.

I Again, most random samples (x, y) ∼ P(X, Y) are jointly typical.
I Thus, if we draw x ∼ P(X) and then transmit it over the noisy channel to get y ∼ P(Y | X=x),

the resulting pair (x, y) is jointly typical with high probability.
I But: drawing x ∼ P(X) and y ∼ P(Y) independently from their marginal distributions usually

does not lead to joint typicality:

Robert Bamler · Lecture 13, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 2



Random Channel Codes

S ∈ {0, 1}n channel encoder−−−−−−−−−−→
P(Y|X)

X ∈ X k memoryless channel−−−−−−−−−−−−→∏k
i=1 P(Yi |Xi)

Y′ ∈ Yk channel decoder−−−−−−−−−−→
P(X′|Y)

S′ ∈ {0, 1}n

(Crazy) idea: assign random code words to bit strings:
I For each s ∈ {0, 1}n, draw a code word C(s) ∈ X k from P(X).
I Define a (deterministic) channel encoder: P(X=x | S=s, C) = δx,C(s).
I Channel decoder: map y to s′ if (C(s′), y) ∈ JP(Xi ,Yi),k ,β for exactly one s′. Otherwise fail.
I Claim (Problem Set): In expectation over all random codes C that are constructed in this

way, and over all input strings s ∼ P(S) := Uniform({0, 1}k), the error probability for
long messages goes to zero as long as n

k < IP(Xi , Yi) − 3β.
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Proof of Expected Performance of Random Codes
Claim: EP(C)P(S)

[
P(S′ 6= S | S, C)

] k→∞−−−→ 0 if n
k < IP(Xi , Yi) − 3β (P(S) = Uniform({0, 1}n))

I 2 possibilities for errors:
I (C(s), y) /∈ JP(Xi ,Yi),k,β:

I (C(s′), y) ∈ JP(Xi ,Yi),k,β for some s′ 6= s:

I Total error probability:
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Proof of the Noisy Channel Coding Theorem
Theorem (reminder): for long messages (n � 1), there exists a channel coding scheme such
that n

k can be made arbitrarily close to the channel capacity C and the error probability
P(S′ 6= s | S=s) can be made arbitrarily small for all s ∈ {0, 1}n.
I Set P(Xi) := arg maxP(Xi) IP(Xi ; Yi). Thus, IP(Xi ; Yi) = C
I Assume n

k < C − 3β. Thus, EP(C)P(S)
[
P(S′ 6= S | S, C)

] n→∞−−−→ 0.
I This means that ∀ε > 0 : ∃n0 such that EP(C)P(S)

[
P(S′ 6= S | S, C)

]
< ε

2 ∀n > n0.

=⇒ For all n > n0, there exists at least one code C with EP(S)
[
P(S′ 6= S | S, C)

]
< ε

2.
=⇒ Since P(S) is a uniform distribution over 2n bit strings, the 2n/2 = 2n−1 bit strings s

with lowest P(S′ 6=s | S=s, C) must all satisfy P(S′ 6=s | S=s, C) < ε.
=⇒ Use their 2n−1 code words C(s) to define a code with ratio n−1

k (≈ n
k for n → ∞)

I Thus, we can make n
k arbitrarily close to the capacity C by letting β → 0.
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Recall: Agenda
I Rate/Distortion Theorem: X −→ S ∈ {0, 1}n −→ X′

all lossy compression codes that satisfy EP [d(X, X′)] ≤ D have EP [bit rate] ≥ R(D)
with the rate/distortion curve:

R(D) := inf
P(X′|X):

EP [d(X,X′)]≤D

IP(X; X′)

I Channel Coding Theorem: S ∈ {0, 1}n −→ X ∈ X k −→ Y′ ∈ Yk −→ S′ ∈ {0, 1}n

In the limit of long messages (n � 1), there exists a channel coding scheme that satisfies
both of the following:

I the ratio n
k can be made arbitrarily close to the channel capacity C := sup

P(Xi)
IP(Xi ; Yi); and

I the error probability P(S′ 6= s | S=s) can be made arbitrarily small for all s ∈ {0, 1}n.
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Proof of Rate/Distortion Theorem
I Channel coding: S ∈ {0, 1}n encoder−−−−→

P(Y|X)
X ∈ X k channel−−−−−−−→∏k

i=1 P(Yi |Xi)
Y′ ∈ Yk decoder−−−−→

P(X′|Y)
S′ ∈ {0, 1}n

I (Lossy) source coding: X encoder−−−−→
P(S|X)

S ∈ {0, 1}n decoder−−−−→
P(X′|S)

X′

I Assume data source P(X) and mapping P(X′|X) are both given.
I Idea: consider inference channel P(X|X′) = P(X) P(X′|X)∑

X P(X) P(X′|X)
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Source/Channel Separation Theorem
I Recall from very first lecture:

I Claim: a joint source and channel coder cannot have a better rate/distortion
performance than an optimal source coder combined with an optimal channel coder.
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