published: 19 April 2023
PrOblem Set O discussion: 19 April 2023

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tiibingen

Course materials available at https://robamler.github.io/teaching/compress23/

Problem 0.1: Source Coding vs. Channel Coding

In the lecture, we learned that encoding/decoding a message can be separated into two
steps: source coding (aka compression) and channel coding (aka error correction).

sender receiver

— channel —» [channel] [source] reconstructed

» source channel
message — [] [coding coding message

coding coding

Here, source coding remowves redundancies from the original message on the sender side,
and recovers them on the receiver side; to do this, a source coder needs a probabilistic
model of the data source (hence the name “source coding”), and—for lossy compression—
a distortion metric. Channel coding, by contrast, introduces redundancies on the sender
side that are designed so that they allow us to detect and correct errors due to channel
noise on the receiver side; to do this, a channel coder needs a probabilistic model of the
channel (hence the name “channel coding”).

Categorize the following technologies into source coding, channel coding, or a com-
bination of both. Discuss within your group how the corresponding model of the data
source and/or channel, as well the distortion metric (if applicable) might look like in
each case:

e 7zip/gzip/bzip2

e MP3, MP4, JPEG, PNG

e the NATO phonetic alphabet

e morse code

e the 3-digit CVV on the back of your credit card
e emoji

e the fact that QR codes are still readable even when they are partially occluded

Problem 0.2: Symbol Codes

In the lecture, we introduced the “simplified game of Monopoly” as a simple toy model
for generating random messages that we might want to compress. In this model, the
message X = (1,%2,..., %)) is a sequence of symbols z; € X for i € {1,...,k(x)}
with some message length k(x) € N and alphabet X = {2,3,4,5,6}.

https://robamler.github.io/teaching/compress23/

We assume the following setup:

e The sender generates a message x in the following way: she throws a pair of

fair 3-sided dice (each having sides {1,2,3}) and records their sum as the first
symbol z;. She then repeats this process for the remaining symbols x5, x3, ..., T.

e The receiver does not yet know the message x (otherwise we wouldn’t have to

transmit it to him). But the receiver does know that the message was generated
by the above stochastic process (i.e., by repeated throws of a pair of 3-sided dice).

The table below lists the resulting probabilities p(x) for each symbol x € X, as dis-
cussed in the lecture. It also introduces five candidate code books C™™) to C'® for binary
symbol codes for this data source.

x | possibilities p(x) CH(z) | CO) | CO(z) | CW(z) | CO|(x)
2| 1/9~0.11 10 010 010 00 010
3 | 0, G 2/9 ~ 0.22 11 011 10 111 01

4 | U@, 00, G0 | 1/3~0.33 100 100 00 01 00

5 | 3, (0 2/9 ~ 0.22 101 101 11 10 11

6 | I 1/9~0.11 110 110 011 110 110
Lo =3 ,cxP(x) |C@(2)] = | 8/3 ~ 2.67

(a)

(c)

(d)

Calculate the expected code word length Lo for each code book O with o €
{1,...,5}, i.e., the weighted average of the length |C®(z)| of code words, averaged
over all symbols z € X and weighted by the probability p(z) that the corresponding
symbol = occurs. For your self-evaluation, L) is already given.

In the lecture, we defined what a uniquely decodable and a profix free symbol
code is, respectively (recall that a “prefix free symbol code” is—confusingly—also

called a “prefix code” for short). Which of the above symbol codes CV) to C'©®)
are uniquely decodable and prefix free, respectively? Justify all your answers.

You should find in Part (a) that the code books C® and C® both have the
shortest expected code word length. Which one of these two code books would
you prefer in practice and why?

You should find in Part (b) that, among the examples C) to C®) all codes that
are prefix free are also uniquely decodable. Argue why this is true in general,
not just for the examples considered here. (Hint: think about how you would
implement a decoder for a prefix code; why can there never be an ambiguity about
the decoded symbols? You may assume that |X| > 2.)

Is the reverse also true in general, i.e., are all uniquely decodable codes prefix
codes? Justify your answer.

(e) You should further find in Part (b) that both C® and C'¥) are prefix free. Consider
now a lossless compression method that alternates between C® and C™ as follows:

given a message X = (Z1,...,Zyx)) € X*, we encode it into the following bit string:
CON (1) | OW (23) | CO(23) | CH(m4) | CP)(25) | CW(z6) | ..., where “|” denotes
concatenation.

(i) Is this compression method uniquely decodable, i.e., is the described mapping
from X* to {0,1}" injective?
(ii) What if we instead alternated between C® and C®? Recall that each one of

these two symbol codes taken by itself is uniquely decodable. Does alternating
between them still result in a uniquely decodable code? Justify your answer.

Note: Alternating between two code books may seem artificial at this point, but
we will see later in the course that being able to switch between different code
books in a deterministic way is important for modeling complicated data sources.

Problem 0.3: Simple Prefix Code Implementation

The accompanying Jupyter notebook has a section that will guide you to implement a
(computationally inefficient but correct) implementation of an encoder and a decoder
for a generic prefix-free symbol code.

Fill in the blanks to complete the implementations. Start with the encoder and verify
its correctness by running the provided unit test. Then complete the implementation
of the decoder and run its unit test. Finally, implement and run a round-trip test as
indicated in the notebook.

Problem 0.4: Refresher on Priority Heaps

On the next problem set, you will be guided to implement the Huffman coding algorithm,
which was teased at the end of the lecture. To prepare ourselves for this task, let’s refresh
our memory about a useful abstract data type called a priority heap (sometimes also
called min-heap, max-heap, or binary heap).

A priority heap holds a collection of items from a totally ordered set (in our case,
symbols z from some alphabet that are ordered by increasing probability p(z)). A
priority heap is initially empty and supports two operations in O(logn) time (where n
is the number of items on the heap):

e inserting an arbitrary item (here, O(logn) is only the amortized time per insertion
unless the maximum heap size is known ahead of time); and

e crtracting the smallest (in case of a min-heap) item, which removes the smallest
item from the heap and returns it.

The Python standard library implements a priority heap in the heapq module. Follow
the simple instructions in the accompanying jupyter notebook to familiarize yourself
with this module. You will need it to solve Problem 1.3 on the next problem set.

	Source Coding vs. Channel Coding
	Symbol Codes
	Simple Prefix Code Implementation
	Refresher on Priority Heaps

