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Recap: Huffman Coding

At the end of the lecture, we introduced the Huffman coding algorithm as our first
example of an entropy coder. Huffman coding takes as input a finite alphabet X and a
probability distribution p : X → [0, 1] (with

∑
x∈X p(x) = 1), and it outputs the code

book CH : X→ {0, 1}∗ of a prefix free (and thus uniquely decodable) symbol code.
On this problem set, you’ll first gain some intuition for the Huffman coding algorithm

by evaluating it manually for simple examples (Problem 1.1). You’ll then make an
observation about Huffman coding that will turn out to be crucial for proving (or even
stating) that Huffman coding is optimal (Problem 1.2). Finally, you’ll implement a
working Huffman coder in Python (Problem 1.3), which you’ll use in Problem Set 3 to
implement your first fully functioning machine-learning based compression method.

Problem 1.1: Huffman Coding Examples

Algorithm 1 on the next page summarizes the Huffman Coding algorithm in somewhat
informal language. Read the algorithm, then construct (with pen and paper) Huffman
codes for the probabilistic models below. For each resulting Huffman code, explicitly
write out the code book (i.e., a table of CH(x) for each x ∈ X), verify that it is indeed
a prefix code, and calculate the expected code word length LCH

:=
∑

x∈X p(x) |CH(x)|.

(a) X = {‘a’, ‘b’, ‘c’, ‘d’} with p(‘a’) = 0.4, p(‘b’) = 0.3, p(‘c’) = 0.2, and p(‘d’) = 0.1;

(b) X = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’} with p(‘a’) = 0.3, p(‘b’) = 0.28, p(‘c’) = 0.12, p(‘d’) = 0.1,
and p(‘e’) = 0.2;

(c) X = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’} with p(‘a’) = 0.05, p(‘b’) = 0.07, p(‘c’) = 0.12, p(‘d’) =
0.12, and p(‘e’) = 0.64; here, you should encounter a tie, which you can break in
three different ways. Try all three possibilities and verify that the length |CH(x)|
of the code words for some symbols x ∈ X varies depending on how you break
the tie. Then calculate the expected code word length LCH

for each of the three
Huffman codes and verify that you get the same number in each case nonetheless.

It turns out that this is a general property: the expected code word length of any
Huffman code does not depend on how we break ties. Can you explain why? This
question is a bit more difficult. Try first to find the answer on your own. If you
can’t, then solve Problem 1.2; it’ll give you a hint how to think about this question.
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Algorithm 1: An informal formulation of Huffman coding (for B = 2).

Input: finite alphabet X, probability distribution p : X→ [0, 1];
Output: code book CH : X→ {0, 1}∗ of an optimal prefix-free symbol code.

1 Create a graph that initially only contains one node for each symbol in X, with
no edges between the nodes; each node in the graph is associated with a
weight; the weight of the initial node for symbol x ∈ X is p(x);

2 Keep track of the “frontier”, i.e., the set of nodes that don’t yet have a parent
node; initially, the frontier contains all nodes;

3 while the graph is not yet connected to a single tree do
4 Identify the two nodes y and y′ in the frontier with lowest weights w and w′,

respectively; if there is a tie, break it arbitrarily (but deterministically);
5 Remove nodes y and y′ from the frontier (but not from the graph);
6 Introduce a new node γ with weight w + w′ and add it to both the graph

and the frontier;
7 Introduce labeled edges between y and γ (with label “0”) and between y′

and γ (with label “1”).

8 Interpret the resulting tree as a trie of the code book CH whose root is the last
node that was added. Thus, the code word CH(x) for any symbol x ∈ X is the
sequence of labels that one encounters as one walks along the unique path
from the root to the leaf node that corresponds to x.

Algorithm 2: A formalized formulation of Huffman coding (for B = 2).

Input: finite alphabet X = {0, . . . , |X|−1}, probability distribution p : X→ [0, 1];
Output: code book CH : X→ {0, 1}∗ of an optimal prefix free symbol code.

1 Initialize a graph (V,E) (more precisely, a forest) whose vertices (aka nodes)
are initially V ← X, and whose edge set E is initially the empty set: E ← ∅;

2 Initialize a “frontier set” F ← {(p(x), x) : x ∈ X};
3 while |F | > 1 do
4 Let (w, y), (w′, y′) be the two smallest elements of F , by lexicographic order;
5 Remove (w, y) and (w′, y′) from F ;
6 Define a new vertex γ := |V | (this choice ensures that γ /∈ V );
7 Add the new vertex γ to V ;
8 Add labeled edges (γ, y, label=“0”) and (γ, y′, label=“1”) to E;
9 Add the new element (w + w′, γ) to F ;

10 At this point, the graph (V,E) is a tree whose root is the only remaining node
in F . Interpret this tree as a trie of the code book CH, i.e., for all x ∈ X, the
code word CH(x) is obtained by identifying its corresponding leaf node in V
and then walking along the unique path from the root node to said leaf node,
concatenating the labels along the edges of this path.
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Problem 1.2: Breaking Ties in Huffman Coding

Consider again all Huffman trees that you constructed in Problem 1.1. For each Huffman
tree that you constructed, sum up the weights of all nodes. Your sums should include
the weight of the root node (which is always 1) but not the weights of the leaf nodes.
What do you observe about these sums of weights? You should have seen the same

numbers before somewhere. Can you explain your observation? And does your observa-
tion help you solve the last part of Problem 1.1 (c)?

Problem 1.3: Huffman Coding Implementation

Algorithm 2 reformulates the Huffman coding algorithm from Algorithm 1 in a more for-
mal way. For simplicity, it assumes that the finite alphabet X is the set of integers from 0
to |X|−1, inclusively. This does not lead to any loss in generality since, if X is a different
finite set then we can always map bijectively between X and the set {0, . . . , |X| − 1},
e.g., via a hash map (for mapping from X to {0, . . . , |X| − 1}) or a simple array (for
mapping from {0, . . . , |X| − 1} to X).

(a) Read Algorithm 2 and convince yourself that it is equivalent to the more informal
formulation in Algorithm 1. You may find it instructive to manually execute
Algorithm 2 with pen and paper for some of the examples in Problem 1.1.

(b) The accompanying jupyter notebook guides you through the implementation of
Algorithm 2, using a representation of the Huffman tree that is optimized for
encoding. Read the instructions, fill in the few missing lines of code, and verify
that your implementation is correct by executing the provided unit tests.

(c) We will implement the corresponding decoder on the next problem set. But you
should already be able to see that your HuffmanEncoder data structure is not
well suited for decoding. Explain why. Then think about how a Huffman tree
for convenient decoding should look like (don’t go into technical details about the
representation in code, just draw a diagram for an example).
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