Solutions to Problem Set 2 S g

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tiibingen

Course materials available at https://robamler.github.io/teaching/compress23/

Problem 2.1: Kraft-McMillan Theorem

In the lecture, we discussed the Kraft-McMillan Theorem. Here’s a reminder:

Theorem 1 (Kraft-McMillan). Let B > 2 be an integer and let X be a finite or countably
infinite set (referred to as “the alphabet”). Then the following two statements are true:

(a) All B-ary uniquely decodable symbol codes C' on X satisfy the Kraft inequality,

1
> po@ =1 (1)

zeX

where |C(z)| is the length of the code word C(x).

(b) For all functions { : X — N that satisfy the Kraft inequality (i.e., Y . % <1),
there exists a B-ary prefiz-free symbol code (aka, a B-ary prefix code) Cy with code

word lengths |Cy(x)| = ¢(x) Yz € X.

We proved part (a) of the Kraft-McMillan theorem in the lecture, but we left out the
last step of the proof of part (b). Let’s fill this gap now. Consider Algorithm 1 on the
next page, which we also introduced in the lecture.

(a) Line 4 of Algorithm 1 claims that £ € [0,1). Why is this the case every time the
algorithm arrives at this line?

Solution: The variable ¢ is initialized as £ <— 1 and then never increased during
the execution of the algorithm. When we come to line 4, £ has been decreased
by a strictly positive amount (since B~“®) > 0) at least once, thus ¢ is strictly
smaller than 1. Further, since ¢ satisfies the Kraft inequality, the entire for loop
decreases £ by a total of at most 1, and thus & never drops below zero. |

(b) Denote the value of £ on Line 4 as £, (where x is the iteration variable of the
for loop). Now consider two symbols z, 2’ € X with z # 2’ and, without loss of
generality, & > &,. Argue that & > &, + B7%®). Then argue that neither can
Cy(x) be a prefix of Cy(z’) nor can Cy(z’) be a prefix of Cy(x). Thus, Cy is a prefix
code as claimed.

Solution: Since each step of the for-loop makes £ smaller and since &, > &,
the symbol 2/ must come before the symbol x in the iteration. Since the for loop

https://robamler.github.io/teaching/compress23/

iterates in order of nonincreasing ¢(z), this means that ¢(z') > ¢(x). Therefore, the
only way how Cy(2’) could be a prefix of Cy(z) is if £(z) = ¢(2’) and Cy(x) = Cy(2'),
in which case Cy(z) is also a prefix of Cy(2). Thus, we only have to prove that
Cy(x) is not a prefix of Cy(a’).

Each step of the algorithm reduces ¢ by B~‘®). Thus, at the beginning of the

iteration for symbol 2 (before executing line 3), the variable ¢ has value &, +B~®),
and all £,/ for symbols 2/ that come before symbol z satisfy &, > &, + B~4®).

Now assume that Cy(z) (which has length ¢(x)) is a prefix of Cy(z"). This means
that the fractional parts of the B-ary expansions of £, and of &,/ agree on the first
((z) digits. Thus, they are both in the interval [(0.Cy(z))g, (0.C(z))p + B="®)
and thus they differ by strictly less than B~“®), which is a contradiction. |

Algorithm 1 is limited to a finite alphabet X because the for loop would not
terminate for an infinite X. Why does part (b) of the Kraft-McMillan Theorem
nevertheless also hold for countably infinite alphabets?

Solution: Prooving part (b) of the Kraft-McMillan Theorem doesn’t require
executing Algorithm 1 for the entire alphabet X. We only have to show that
there ezists a prefix code C, with the requested code word lengths, |Cy(z)| = ¢(x)
for all x € X. Such a prefix code is well defined: for each x € X, the code word
Cy(x) is given by executing Algorithm 1 but terminating it once we’ve found Cjy(x).
This takes finite time for any given x € X, so it is well defined. (Note that this
argument doesn’t work for uncountable infinite alphabets since we cannot iterate
over an uncountable set, not even in an infinite loop.) |

More generally, why do we always insist that X must be countably infinite if it is
infinite? Argue why lossless compression on an uncountable alphabet is impossible.
You don’t need to think about Algorithm 1 to answer this question, just think
about what a lossless compression code is from a purely mathematical perspective.

Solution: A lossy compresion code (such as a uniquely decodable symbol code)
is an injective mapping from the message space to the space of finite-length bit
strings. The space of finite-length bit strings is clearly countable, i.e., there exists
an injective mapping from the finite length bit strings to the set of the natural
numbers (e.g., just prepend the bit string with a “1” bit and then interpret the
resulting sequence of symbols as a number in the positional numeral system of
base B). Thus, by chaining together the lossless compression code (which maps
injectively from the message space to the space of finite-length bit strings) with
the injective mapping from finite-length bit strings to natural numbers, we obtain
an injective mapping from the message space to the natural numbers. Existence
of such an injective mapping means that the message space is countable.

This argument may seem trivial but it has important consequences: while, strictly
speaking, non-countable message spaces don’t really exist in digital computing
anyway, a lot of data that we might want to compress (e.g, scientific measurements,

Algorithm 1: Constructive proof of Kraft-McMillan theorem part (b).

Input: Base B € {2,3,...}, finite alphabet X, function ¢ : X — N that

satisfies the Kraft inequality (i.e., Y, cx mimr < 1)-

Output: Code book Cy : X — {0,..., B — 1}" of a prefix code that

satisfies |Cy(z)| = {(z) Vo € X.

1 Initialize £ < 1;
2 for x € X in order of nonincreasing ¢(x) do

[SL B)

Update & < & — B~4@);

Set Cy(x) to the first ¢(z) bits after the “0.” in the above B-ary
representation of £ (pad with trailing zeros to length ¢(x) if necessary);

neural network weights, ..
typically via floating point numbers.

.) is really meant to approximate real-valued data,
In such situations, theorems for lossless

compression—while technically still valid—aren’t typically very useful, and it is
more important to think about bounds on lossy compression, which we’ll discuss
later in this course.

Problem 2.2: Shannon Coding

In Problem 1.1 on the last problem set, you constructed Huffman codes C'y for three dif-
ferent probability distributions. The following table shows these codes for your reference.
Throughout this problem, we assume B = 2.

x p(x) | Culz) | Cs(x) [p(x) | Culz) | Cs(x) | plx) | Culz) | Cs(z)

Ca’ 0.4 “0)7 “01’7 0'3 “0077 44107’ 0'05 “000’7 “1111177
‘b’ 0.3 | “10” | “10” |0.28] “01” | <017 |0.07 | “001” | “1110”
‘o 0.2 | “110” | “110” | 0.12 | “100” | “11117 | 0.12 | “010” | “1101”
‘& 0.1 | “1117 | “11117 | 0.1 | “1017 | “1110” | 0.12 | “0117 | “1100”
4e7 o o 02 “1177 “11077 0.64 ((177 “077

H, Le=| 185 1.9 24 220 | 2.22 2.64 1.63 | 1.72 2.13

(a) Calculate the entropy Ha[p(x)] of each of the three probability distributions p in
the above table. Then verify explicitly for these three examples that

Hy[p(z)] < Loy < Ha[p(x)] +1

(2)

where L¢,, is the expected code word length of Cy, which is given in the last line
of the above table (you already calculated these values on the last problem set).

Solution:

See last entries in the three columns labeled p(z) in the above table.

(b)

For each of the three probability distributions p, construct the Shannon code Cg
by applying Algorithm 1 to the code word lengths ¢(x) = [—log, p(z)] Vz € X,
where [-] denotes rounding up to the nearest integer (you may want to use a simple
Python one-liner to calculate all /(x) in one go). Verify explicitly that you get a
prefix code in each example. Then calculate the expected code word length L¢g
of the Shannon code for each example and verify that

Hs[p(x)] < Loy < Leg < Halp(e)] + 1. (3)

Solution: See filled-in entries in the above table. Note that you might obtain
slightly different Shannon codes depending on the order in which you iterate over
symbols of equal code word lengths. But your Shannon codes should all be prefix
free and you should get the same code word lengths. |

Come up with some probability distribution p with p(xz) > 0 Vx € X with |X| =5
for which Hs[p(x)] = L¢y, = Leg. What property does p have to satisfy?

Solution: To solve this problem, we don’t have to think about Huffman coding
at all. It suffices to find a probability distribution p where L¢, = Ha[p(x)]. Since
we know that Hs[p(z)] < L¢, < Leg for all probability distributions p, having
L¢g = Hylp(x)] implies also L¢,, = Ha[p(z)].

The Shannon code for a probability distribution p has code words with lengths
leg(z) = [—logyp(z)]. Thus, Lo, = Ho[p(z)] means that E,[[—log, p(z)]] =
E,[—log, p(z)]. Since [—log,p(x)] > —log, p(z) for all =, the two expectations
are equal if and only if the information content, — log, p(z), of every symbol z is
an integer (so that rounding it up does not increase it). In other words, all symbol
probabilities p(z) must be negative integer powers of B = 2.

For example, we can start from the code word lengths of Cy in the second example
above (£(‘a’) = 2, £(‘D’) = 2, (‘c’) = 3, {(‘d’) = 3, and £(‘¢’) = 2). Then, we
set p(z) = 271 for all z, ic., p(‘a’) = 1, p(‘'b’) = 1, p(‘c’) = &, p(‘d’) = &,
and p(‘e’) = i. These probabilities do indeed add up to one, as they should for
a properly normalized probability distribution, and we have (by construction),
[—log, p(z)] = —log, p(x) for all z, and thus Le, = Ha[p(z)]. [|

Problem 2.3: Entropy and Information Content

In the lecture, we defined the information content to base B of a symbol x with respect
to a probabilistic model p as follows,

information content of x w.r.t. p := —logg p(z). (4)

Further, we defined the entropy Hpg[p| to base B as the ezpected information content,

ZP)logg p(w (5)

reX

(a)

In the literature, the subscript B is often dropped. Depending on context, in-
formation contents and entropies are usually understood to be either to base 2
(mostly in the data compression literature) or to the natural base e (in mathemat-
ics, statistics, or machine learning literature, and also often when you implement
stuff in real code). How do entropies and information contents to base B = 2 and
to base B = e relate to each other?

Solution: Since logga = 11;1—; for all B,a > 0 (where In denotes the natural
logarithm to base e), we have

~ —Inp(r) _ H.[p(z)]
logy p(2) = — 53 and Hylp(e)] = — = (6)
where In2 & 0.69 (or 5 ~ 1.44). [|

(Additivity of information contents and entropies of statistically independent ran-
dom variables:) Consider two symbols z; € X; and o € X, from alphabets X;
and X, respectively. Assume that x; and xy are statistically independent, i.e., that
the probability distribution p : (X; x X2) — [0, 1] of the tuple (x1, z5) is a product
of two probability distributions,

p((z1,22)) = pi(a1) pa(a2) Vo, € Xy, 22 € X (7)

where p; : X; — [0,1] and py : X9 — [0, 1] are probability distributions (i.e., they
both sum to 1) on X; and X,, respectively (we will discuss statistical independence
in more detail in Lecture 4). Show that if Eq. 7 holds, then both information
contents and entropies are additive, i.e., in particular,

Hg[p] = Hplp] + Hplp2] VB >0 (in case of statistical independence). (8)

Note: you will prove on Problem Set 4 that, if we drop the restriction to statistical
independence (Eq. 7), then entropies are subadditive in general, but no general
statement can be made about the sum of two information contents.

Solution: Additivity of information contents follows directly from Eq. 7 and the

property of the logarithm, logz () = logg o + logy 8. For the entropy, we find:

Hplp) = = p((21,22)) log p((x1,22))

21102 € X2
_ (_ é{ ;{ pi(x1) pa(w2) [logp pr(a1) + logg pa(22)]
- _(légpz(:@)) %pl(fcl)logg pi(21)

- (%pl(l‘l)s %m(fw) logp pa(2)
S 2;; (1) logg ;f(xl) - %pz(%) logp pa(x2)

= Hp[p:] + Hpp:]

Problem 2.4: Understanding Entropy: a Trivial Example

In this problem, we aim to gain some more intuition on why information content is
defined the way it is (Eq. 4). To this end, we will consider a compression method that
is so trivial that the word “compression” will almost seem like an overstatement in this
context. Curiously, however, this trivial compression method turns out to be a natural
starting point for understanding the modern and highly effective “Asymmetric Numeral
Systems“ (ANS) entropy coder, which we will discuss in Lecture 6.

The strategy that we use in this problem is something that you’ll find useful for
approaching many new topics, not just in this course: when trying to understand a
complicated new concept, it is often a good idea to use act similarly as if you were
debugging code: reduce the new concept to its absolute simplest form, try to understand
it in this simple form, and then gradually build back up to the general form.

Problem Setup. Consider a data source that generates a sequence (1,2, ..., Zyx))
of symbols from a finite alphabet X. Now, assume the simplest possible probability
distribution p for the symbols: the uniform distribution, i.e., p(x) = 1/|%| Vz € X.

(a) What is the entropy Hs[p(z)] per symbol (with base B = 2)?

Solution: The entropy is the expected information content. Since the informa-
tion content — log, p(z) = — log, |—31€‘ = log, | X| is independent of x € X, calculating
the expectation value is trivial and we obtain Hs[p(x)] = log, |X| [|

(b) Take a step back from the problem setup and consider the binary representation
of a positive integer n € N. How long is this binary representation, i.e., how many

bits does it contain, assuming that there are no leading zeros? Express your result
as a mathematical function of n and test it for n € {1,2,3,4,5} to make sure you
don’t have an off-by-one error.

Solution: The length of the binary representation of a positive integer n is
[logy(n + 1)], where [-] denotes rounding up to the nearest integer.

Proof: Let’s first think about the inverse problem: what are all the positive integers
whose binary representations have some given length ¢ € N? The smallest of these
integers is represented in binary as a single “1” followed by ¢—1 zeros, i.e., its value
1S Ngmallest,r = 2¢=1: and the largest integer whose binary representation has length ¢
is represented in binary as a string of ¢ “17-bits, i.e., its value is Nargest,r = 20 — 1.

Let’s now calculate f(n) := [logy(n + 1)] for each n € {Ngmaltest,ts - - - » Margest,¢ } -
L f(nlargest,f) = Dog2(nlargest,€ + 1)—| = [10g2<n€ -1+ 1)—‘ = "6" = ga

o for Nsmallest,t; WE note that 10g2 (nsmallest,f + 1) > 10g2 (nsmallest,f) = 108;2(26_1) =
¢ —1 where we used that the logarithm is a strictly increasing function;
therefore, when we round up to the nearest integer, we find f(nsmanests) =
ﬂog2<nsmallest,€ + 1)_| >l — 17 i.e., f(nsmallest,ﬁ) Z 4 (Since f maps to integers);

e since the function f is monotonically increasing, we find ¢ < f(ngmanest.e) <

f(n) S f(nlargest,é) = (for all n S {nsmallest,b s 7nlargest,£}- ThUS, f(n) =/
for all n in the range, which proves our claim.

It’s generally a good idea to check for mistakes by considering some examples:

n: 1 2 3 4) 6 7 8
binary: (1), (10), (11), (100), (101), (110), (111), (1000),
length: 1 2 2 3 3 3 3 4

logo(n+1): 1 1.58 2 2.32 2.58 2.81 3 3.17

Looks good: rounding up the values in the last row to the nearest integer results
in the correct lengths. |

Back to the problem setup: combine your findings from parts (a) and (b) to come
up with a trivial yet near-optimal prefix code Civial : X — {0,1}". The expected
code word length L¢, . . should exceed the entropy Hs[p(x)] by less than 1 bit.

Hint 1: no need to think about Huffman or Shannon coding; it’s much simpler.
Hint 2: a trivial way of ensuring that a code book is prefix free is by making all

code words Ciivial() for x € X different in content but equal in length.

Solution: Simply enumerate all elements of X with integer indices from 0 to
|X| —1; then, express these indices in binary, making them all equally long by
padding with leading zeros to the length of the longest binary representation.

The index with the longest binary representation is the largest one, i.e., |X| — 1.
According to Part (b), its binary representation has length [log, ((|X] — 1) +1)] =

[log, |X|]. Since we pad all other code words to this length, we have L¢, . . =
[log, |X|] < log, |X| + 1 = Hy[p(z)] + 1 (last equality according to Part (a)).

Note that Ciyivial turns out to be a Shannon code for this data source if |X]| is a
power of 2 (and very similar to a Shannon code otherwise). That’s not really a
coincidence. Another way of stating this is that Shannon coding generalizes this
trivial code (that one obtains by simply enumerating all elements of the alphabet
in binary) to arbitrary (i.e., not necessarily uniform) symbol distributions. [|

Problem 2.5: Implementing a Huffman Decoder

In Problem 1.3 of the last problem set, you implemented the Huffman coding algorithm
in Python. Your Huffman tree there was optimized for encoding. For your reference, the
accompanying jupyter notebook contains again the suggested solution to that exercise.

The notebook then guides you through the implementation of a Huffman tree that is
optimized for decoding. Fill in the missing lines of code in the class Huf fmanDecoder and
test your implementation using the provided unit test. Then implement some round-trip
tests as explained in the notebook.

Solution: see accompanying jupyter notebook. |

	Kraft-McMillan Theorem
	Shannon Coding
	Entropy and Information Content
	Understanding Entropy: a Trivial Example
	Implementing a Huffman Decoder

