ished: 26 Apri
Problem Set 2 liscussion. 3 Moy 2029

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tiibingen

Course materials available at https://robamler.github.io/teaching/compress23/

Problem 2.1: Kraft-McMillan Theorem

In the lecture, we discussed the Kraft-McMillan Theorem. Here’s a reminder:

Theorem 1 (Kraft-McMillan). Let B > 2 be an integer and let X be a finite or countably
infinite set (referred to as “the alphabet”). Then the following two statements are true:

(a) All B-ary uniquely decodable symbol codes C on X satisfy the Kraft inequality,

1
Z Blc¢@)] =1 (1)

zeX

where |C(x)| is the length of the code word C(z).

(b) For all functions € : X — N that satisfy the Kraft inequality (i.e., Y x zim < 1),
there exists a B-ary prefix-free symbol code (aka, a B-ary prefix code) Cy with code
word lengths |Cy(z)| = {(z) Yz € X.

We proved part (a) of the Kraft-McMillan theorem in the lecture, but we left out the
last step of the proof of part (b). Let’s fill this gap now. Consider Algorithm 1 on the
next page, which we also introduced in the lecture.

(a) Line 4 of Algorithm 1 claims that £ € [0,1). Why is this the case every time the
algorithm arrives at this line?

(b) Denote the value of £ on Line 4 as &, (where x is the iteration variable of the
for loop). Now consider two symbols z, 2" € X with = # 2’ and, without loss of
generality, & > &,. Argue that & > & + B~Y®). Then argue that neither can
Cy(x) be a prefix of Cy(z’) nor can Cy(z’) be a prefix of Cy(z). Thus, Cy is a prefix
code as claimed.

(c) Algorithm 1 is limited to a finite alphabet X because the for loop would not
terminate for an infinite X. Why does part (b) of the Kraft-McMillan Theorem
nevertheless also hold for countably infinite alphabets?

(d) More generally, why do we always insist that X must be countably infinite if it is
infinite? Argue why lossless compression on an uncountable alphabet is impossible.
You don’t need to think about Algorithm 1 to answer this question, just think
about what a lossless compression code is from a purely mathematical perspective.

https://robamler.github.io/teaching/compress23/

Algorithm 1: Constructive proof of Kraft-McMillan theorem part (b).

Input: Base B € {2,3,...}, finite alphabet X, function ¢ : X — N that
satisfies the Kraft inequality (i.e., Y, cx mimr < 1)-
Output: Code book Cy : X — {0,..., B — 1}" of a prefix code that

satisfies |Cy(z)| = {(z) Vo € X.
1 Initialize £ < 1;
2 for x € X in order of nonincreasing ¢(x) do

3 Update ¢ < ¢ — B~4@);
4 Write out € € [0,1) in its B-ary represenation: & = (0.777...)g;
5 Set Cy(x) to the first ¢(z) bits after the “0.” in the above B-ary

representation of £ (pad with trailing zeros to length ¢(x) if necessary);

Problem 2.2: Shannon Coding

In Problem 1.1 on the last problem set, you constructed Huffman codes Cy for three dif-
ferent probability distributions. The following table shows these codes for your reference.
Throughout this problem, we assume B = 2.

r | p() | Culz) | Cs(x) | p(z) | Culz) | Cs(x) | p(z) | Culz) | Cs(2)
2 |04 | 0 0.3 | “00” 0.05 | “000”
b 03 | “107 0.28 | “01” 0.07 | “001”
‘@ | 0.2 | “1107 0.12 | “100” 0.12 | “010”
‘@ |0 | <111 0.1 | “1017 0.12 | “011”
@ | - - 0.2 | “11” 0.64 | “17
Lo = 1.9 2.22 1.72

(a) Calculate the entropy Hs[p(x)] of each of the three probability distributions p in
the above table. Then verify explicitly for these three examples that

Hy[p(z)] < Loy < Hofp(z)] + 1 (2)

where L¢,, is the expected code word length of Cy, which is given in the last line
of the above table (you already calculated these values on the last problem set).

(b) For each of the three probability distributions p, construct the Shannon code Cs
by applying Algorithm 1 to the code word lengths ¢(x) = [—log, p(z)] Vx € X,
where [-] denotes rounding up to the nearest integer (you may want to use a simple
Python one-liner to calculate all ¢(x) in one go). Verify explicitly that you get a
prefix code in each example. Then calculate the expected code word length L¢g
of the Shannon code for each example and verify that

Hy[p(z)] < Loy < Los < Hafp(x)] + 1. (3)

(c) Come up with some probability distribution p with p(z) > 0 Vx € X with |X| =5
for which Hs[p(x)] = L¢y, = Leg. What property does p have to satisfy?

Problem 2.3: Entropy and Information Content

In the lecture, we defined the information content to base B of a symbol x with respect
to a probabilistic model p as follows,

information content of x w.r.t. p := —logg p(z). (4)

Further, we defined the entropy Hpglp|] to base B as the expected information content,

Hplp(x ZP z)logp p(x). (5)

zeX

(a) In the literature, the subscript B is often dropped. Depending on context, in-
formation contents and entropies are usually understood to be either to base 2
(mostly in the data compression literature) or to the natural base e (in mathemat-
ics, statistics, or machine learning literature, and also often when you implement
stuff in real code). How do entropies and information contents to base B = 2 and
to base B = e relate to each other?

(b) (Additivity of information contents and entropies of statistically independent ran-
dom wvariables:) Consider two symbols z; € X; and x5 € X5 from alphabets X;
and X,, respectively. Assume that x; and x5 are statistically independent, i.e., that
the probability distribution p : (X, x X3) — [0, 1] of the tuple (z1, z2) is a product
of two probability distributions,

]5((1‘1, ZL‘Q)) = pl(l'l)pg(l'z) \V/Il < %1, To € %2 (6)

where p; : X; — [0,1] and py : X9 — [0, 1] are probability distributions (i.e., they
both sum to 1) on X; and X, respectively (we will discuss statistical independence
in more detail in Lecture 4). Show that if Eq. 6 holds, then both information
contents and entropies are additive, i.e., in particular,

Hg[p] = Hplp1] + Hplps] VB >0 (in case of statistical independence). (7)

Note: you will prove on Problem Set 4 that, if we drop the restriction to statistical
independence (Eq. 6), then entropies are subadditive in general, but no general
statement can be made about the sum of two information contents.

Problem 2.4: Understanding Entropy: a Trivial Example

In this problem, we aim to gain some more intuition on why information content is
defined the way it is (Eq. 4). To this end, we will consider a compression method that
is so trivial that the word “compression” will almost seem like an overstatement in this
context. Curiously, however, this trivial compression method turns out to be a natural
starting point for understanding the modern and highly effective “Asymmetric Numeral
Systems“ (ANS) entropy coder, which we will discuss in Lecture 6.

The strategy that we use in this problem is something that you’ll find useful for
approaching many new topics, not just in this course: when trying to understand a
complicated new concept, it is often a good idea to use act similarly as if you were
debugging code: reduce the new concept to its absolute simplest form, try to understand
it in this simple form, and then gradually build back up to the general form.

Problem Setup. Consider a data source that generates a sequence (1, %2, .., Tyx))
of symbols from a finite alphabet X. Now, assume the simplest possible probability
distribution p for the symbols: the uniform distribution, i.e., p(xz) = 1/|%X| Vz € X.

(a) What is the entropy Hs[p(x)] per symbol (with base B = 2)?

(b) Take a step back from the problem setup and consider the binary representation
of a positive integer n € N. How long is this binary representation, i.e., how many
bits does it contain, assuming that there are no leading zeros? Express your result
as a mathematical function of n and test it for n € {1,2,3,4,5} to make sure you
don’t have an off-by-one error.

(c¢) Back to the problem setup: combine your findings from parts (a) and (b) to come
up with a trivial yet near-optimal prefix code Civial : X — {0,1}". The expected
code word length L¢, . . should exceed the entropy Hs[p(x)] by less than 1 bit.

Hint 1: no need to think about Huffman or Shannon coding; it’s much simpler.

Hint 2: a trivial way of ensuring that a code book is prefix free is by making all
code words Ciivial() for x € X different in content but equal in length.

Problem 2.5: Implementing a Huffman Decoder

In Problem 1.3 of the last problem set, you implemented the Huffman coding algorithm
in Python. Your Huffman tree there was optimized for encoding. For your reference, the
accompanying jupyter notebook contains again the suggested solution to that exercise.

The notebook then guides you through the implementation of a Huffman tree that is
optimized for decoding. Fill in the missing lines of code in the class Huf fmanDecoder and
test your implementation using the provided unit test. Then implement some round-trip
tests as explained in the notebook.

	Kraft-McMillan Theorem
	Shannon Coding
	Entropy and Information Content
	Understanding Entropy: a Trivial Example
	Implementing a Huffman Decoder

