Solutions to Problem Set 3 i

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tiibingen

Course materials available at https://robamler.github.io/teaching/compress23/

Problem 3.1: Kullback-Leibler Divergence

In the lecture, we introduced the Kullback-Leibler (KL) divergence, or relative en-
tropy, Dkr,. The KL-divergence is an information-theoretical measure of mismatch be-
tween two probability distributions. We discussed that D, (pdata(x) H pmodel(x)) quanti-
fies by how much the expected bit rate of an optimal lossless compression code increases
when we use a model pyqe that does not perfectly match the (unknown) distribution
Paata Of the true data generative process. Thus, the KL-divergence is defined as follows,

DKL (pdata<x) H pmodel(x)) = H(pdata’pmodel) - H(pdata)' (1)

The KL-divergence is a useful quantity in more than just data compression. For ex-
ample, we will see it come up again when we introduce variational inference in Lecture 8.

(a) Convince yourself that the following two expressions are valid formulations of the
KL divergence:
p(x)

Dxw(p(x) | ¢(%)) = Exp [log p(x) — log q(x)] = Ex, {log @}
Here, the notation Ex.,[f(x)] := >, p(x)f(x) denotes the expectation value of
some function f under the probability distribution p. (In practice, we sometimes
can’t evaluate p(x) and therefore can’t calculate the weighted sum over all x, but
we might be able to estimate Ex.,[f(x)] by averaging f(x) over samples from a
finite training set or test set, as discussed in the lecture.)

(2)

Note: This is a fairly trivial exercise but Eqs. 1 and 2 are both important to
remember.

Solution: Both formulations in Eq. 2 follow directly from the definition of Dyky,
in Eq. 1; the definitions of the entropy and the cross entropy, the properties of the
logarithm, and the linearity of the expectation value:
Dy, (p(x) || a(x)) = H(p.q) — H(p)
= Exp [—10g ¢(x)] — Exnp [—log p(x)]
= Exp [logp(x) — log ¢(x)]

o]

https://robamler.github.io/teaching/compress23/

tangent g to convex
function f (note thht
/)\

g(&) = £(§) y¢

convex function f= convex function f<m

E
F(ELE)) [g(&)]

[IRITININ Illlillll [IRNTININ
samples & E[¢] samples &

Figure 1: [llustration of Jensen’s inequality (Eq. 3). Left: E[f(£)] for some convex func-

tion f. Center: f(E[¢]) for the same convex function f. Right: E[g({)]) where
g is the affine linear function whose graph (blue) is a tangent to f, touching
it at the point (E[¢], f(E[¢])). Since f is convex, the tangent g to it satisfies
g(&) < f(&) V€ and thus E[g(§)] < E[f(§)]. Further, since g is affine linear, it
can be pulled out of the expectation: E[g(§)] = g(E[¢]) = f(E[£]). Thus, in
total, f(E[¢]) < E[f(¢)] for any convex function f, as claimed in Eq. 3.

(b) Since Dyp, measures the overhead in expected bit rate over its lower bound we kind

of already know that it cannot be negative. But let’s prove this in a more direct
way. The proof uses Jensen’s inequality (see Figure 1 on the next page), which
states that, for any convexr function f and any probability distribution p, we have:

f(Eewple]) < Eenp[f(§)] (for convex f). (3)

Prove that Dxq, (p(x) H q(x)) > 0 for all probability distributions p and ¢ by using
Eq. 2, Jensen’s inequality, and the fact that the function f(¢£) := —log¢ is convex.

Note: Jensen’s inequality (Eq. 3) is a very useful relation that often comes up
when proving bounds in information theory and in approximate Bayesian inference
(scheduled for Lecture 8).

Solution: Let f: R.y — R be the convex function with f(¢) := —log¢ (you can

see that f is convex by noting that its second derivative, f”(£) = g%v is nonnegative

for all £ in the domain of f). Then start from the last formulation of D, in Eq. 2
q(x)

and apply Jensen’s inequality:
] e[t -2 (G2
)
)

—XD - f(2p<x> f—j) - f<2q<x>) — f(1)=0

>

X X

where, on the second line, we explicitly wrote out the expectation as a weighted

sum and then used the fact that a normalized probability distribution sums to 1.
|

a) training: b) sampling (“generating”)

= @O0 0-
target
H H H H generated
Pmodel 1 Pmodel2 Pmodel3 Pmodel,4 output:
represen?ailii%%n: oee represen?ai?i%enr: _> _> _> > oo

fom trnng e soninel soninel

Figure 2: Autoregressive model for character based text generation. a) The training
algorithm minimizes the cross entropy between the true distribution of English
text (estimated via samples from a training set) and a probabilistic model
parameterized by a so-called recurrent neural network. The model reads text
character by character (bottom row). After reading character i, the model
parameterizes a probability distribution pmederi+1 over the next character. The
training algorithm then tries to minimize the information content of the correct
next character (top row) under pyoderi+1. b) In addition to a training objective,
the model implementation also already comes with a function generate that
samples from a trained model. The function draws a random first character
Z1 ~ Pmodel,1, Prints it, then feeds it back into the model in order to calculate
Dmodel 2, from which the function draws the next character z,, and so on.

Problem 3.2: Lossless Compression of Natural Language
With Recurrent Neural Networks

This zip-file contains code for a simple character-based autoregressive language model,
forked from a GitHub repository! by Sean Robertson. You will learn more about au-
toregressive models in the next lecture, but Figure 2 on the next page should tell you
enough to solve this problem.

In this problem, you will train the model and then turn it into a compression method,
whose performance you evaluate empirically. Although your resulting compression method
will already be quite effective (considering its simplicity), it will still waste some bit rate,
and it will also be very slow. You will improve upon it in upcoming problem sets as you
learn more about deep probabilistic models and entropy coders.

The code comes as a git bundle. To extract it, run:

git clone path/to/char-rnn-compression.gitbundle char-rnn-compression

You’ll also need the python packages PyTorch, numpy, tqdm, and unidecode. You can
install them, e.g., as follows (or use your favorite package manager instead):

cd char-rnn-compression

python3 -m pip install virtualenv
python3 -m virtualenv -p python3d venv
source venv/bin/activate

https://github.com/spro/char-rnn.pytorch

https://github.com/spro/char-rnn.pytorch

python3 -m pip install torch tqdm unidecode numpy

Once everything is set up, it’s time to get your hands dirty.

(a)

The repository contains some toy data set of historic English text? in the direc-
tory dat, together with a canonical random split (by lines) into training, validation,
and test set. Train the model on the training set by executing:

python3 train.py dat/shakespeare.txt

Training this small model doesn’t require any fancy hardware; it should only take
about 10 to 20 minutes on a regular consumer PC.

The script will use the training set at dat/shakespeare.train.txt. Before train-
ing and after every tenth training epoch, the script will evaluate the model’s per-
formance on the validation set (dat/shakespeare.val.txt) and it will print out
the cross entropy (to base 2). In regular intervals, the script will also print out
some samples from the model (i.e., random generated text). You should be able
to observe that the cross entropy decreases (because that’s the objective function
that the training procedure minimizes), and the generated text should resemble
more and more the kind of text you can find in the training set. At the end of
training, the cross entropy should oscillate roughly around 2 bits per character.

The trained model will be saved to a file named shakespeare.pt. You can now
evaluate it on the validation or test set:

python3 evaluate.py shakespeare.pt dat/shakespeare.val.txt
python3 evaluate.py shakespeare.pt dat/shakespeare.test.txt

While the model is training, familiarize yourself with the code in evaluate.py
and in generate.py, and try to understand what the functions evaluate and
generate do. What does calling torch.multinomial (output_dist, 1) in the
function generate achieve, and what quantities does output_dist contain?

Note: Both evaluate and generate take an argument named decoder. Despite
its name, this argument is not a decoder in the sense of data compression. It is just
the trained model (the original code base had no relation to data compression).

Solution: The function generate takes an initial string of characters prime_str,
and it then samples text from the model that starts with prime_str. It does this by
unrolling the model as illustrated in Figure 2 (b). Here, the step from the hidden
representation h;) to the generated character (depicted as a circle with question
mark in the figure) deserves special attention. It is the only step in the process
that is stochastic. By contrast, all other steps in the model are deterministic. The
hidden representation h; parameterizes a probability distribution over characters.

Downloaded from https://raw.githubusercontent.com/karpathy/char-rnn/master/data/
tinyshakespeare/input.txt

https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt

In detail, generate first obtains a vector of (unnormalized) probabilities for each
character in the alphabet and assigns it to the variable output_dist. Here, “un-
normalized” means that the components of output_dist don’t necessarily sum up
to one. But they are still all nonnegative, and the probability of the i'" charac-
ter in the alphabet is implicitly defined as output_dist[i] / > ;output_dist[j].
Calling torch.multinomial (output dist, 1) draws a single sample from this
distribution, taking care of the normalization internally (according to the docu-
mentation?).

The function evaluate estimates the cross entropy H (Pdata, Pmodel) Dy performing
an empirical average over — 10g pmodel(X) on a random sample from the data pro-
vided in the argument text_file. It normalizes the cross entropy by the length of
the sample, i.e., it returns the cross entropy per character. The length of the sam-
ple can be controlled by the argument chunk_len. By default, chunk_len is rather
small so that the evaluation doesn’t take too much time, but this has the effect
that the estimate will be noisy, i.e., the return value of evaluate will fluctuate
quite a bit across function invocations. Such fluctuations are OK for debugging
output, but when you evaluate the trained model later you should set chunk_len
to a larger value so as to reduce the variance.

The estimation of the cross entropy also has to take into account that the model
only outputs unnormalized probabilities. The model parameterizes probabilities by
the logits (i.e., the logarithms of unnormalized probabilities). Thus, the negative
log probability of character ¢ is given as

exp (logit [i])
> exp (Logit[j]

—logp(z;) = —log

) = log (Zexp (Logit [j])) — logit[i].
J

Here, a naive evaluation of the first term on the right-hand-side would be numeri-
cally unstable because the exponential function can easily overflow. The function
evaluate therefore applies the so-called “log-sum-exp trick” to make the calcula-
tion numerically stable. The trick is to subtract max; logit[k] from all logits,
observing that such a global shift does not change the value of the right-hand side
(apart from effects due to rounding errors). |

(¢) You should have observed that the function generate generates random text. This
is possible because the trained model parameterizes a probability distribution pyedel
over character sequences, so one can draw random samples from this distribution.
However, in a compression application, we don’t want to generate random text.
We want the receiver to be able to deterministically decode the exact same text
that the sender encoded. How can you achieve this using the trained probabilistic
model and an entropy coder. Make a sketch similar to Figure 2 to illustrate how
you would approach encoding and decoding. Where do you generate/consume code

3https://pytorch.org/docs/stable/generated/torch.multinomial .html

https://pytorch.org/docs/stable/generated/torch.multinomial.html

a) encoding: b) decoding:

d
*bitsang: (o]

—> h2 |-\ hs e
message to be stlrt
compressed: sentinel

hidden
representation:

decoded
message:

compressed
bit string:

hidden
representation:

[o]

—>[hs |F\—>| hy -\ eee

start
sentinel

Figure 3: Encoding and decoding with a symbol code that is informed by an autore-

gressive model. Both encoding and decoding unroll the autoregressive model,
which produces a sequence of probability distributions over the alphabet of
characters. We use these probability distributions to construct a sequence of
Huffman Codes, one Huffman Code per encoded/decoded character. a) at en-
coding time, we know the entire message, so we can simply unroll the model
on the message and use the resulting Huffman Codes to encode each charac-
ter. b) at decoding time, we start without any knowledge of the message, but
we can unroll the autoregressive model up to its first step as this doesn’t yet
require any input from the message. We can then construct the Huffman Code
for the first character, decode the character, and feed it into the autoregressive
model in order to transition to the second step. We then repeat this process,
consuming a small chunk of the compressed bit string at each step.

words and what probability distributions do you use to build the corresponding
code books?

Solution: This is precisely the concept of “entropy coding”, of which the symbol
codes that we've been discussing so far are an example: entropy coding employs a
probabilistic model but it still admits deterministic generation. In contrast to the
function generate, which uses the probabilistic model to draw random samples,
we will now use the probabilistic model to construct an optimal symbol code, which
we then use to decode a symbol from a bit string.

You can think of this approach as the probabilistic model making a “fuzzy” predic-
tion for the next character. To turn this fuzzy prediction into a precise prediction,
we have to inject additional information in the form of a few bits from the com-
pressed bit string. The better the fuzzy prediction was to begin with (i.e., the
better the probabilistic model resembles the true data distribution), the less ad-
ditional information in the form of compressed bits you have to inject. Figure 3
illustrates our approach for encoding and decoding. |

Let’s now implement the encoder. Create a new file compression.py and paste
your implementations of HuffmanEncoder and HuffmanDecoder from Problem
Sets 1 and 2 into it (if you didn’t solve these problem sets, use the solutions from

the course website?). Then implement a function encode huffman with signature
def encode_huffman(model, message):

Here, the argument model is a trained model (the same as the confusingly named
decoder argument in the function evaluate), and the argument message is a
string of English text. The function should compress message using Huffman
coding, and yield the resulting sequence of bits (boolean values). Once the entire
message has been processed, the function should print some relevant statistics,
such as the total bit rate, the total information content, and the bit rate that you
would have obtained had you used Shannon coding instead of Huffman coding.

Your implementation of encode_huffman will be similar to the function evaluate.
Remember that the autoregressive model builds a new probability distribution for
each character, so you’ll have to build up a new Huffman tree for each character.

Then turn your implementation into an executable script by parsing some ap-
propriate command line arguments (similar to how it is done in evaluate.py),
reading message from a text file, and writing the compressed representation to a
new (binary) file. You can use the utilities provided to you in bitutils.py for
generating a binary file (bring them into scope with from bitutils import).

Hint: you can apply the Huffman coding algorithm directly to an unnormalized
probability distribution (i.e., to logits.exp () .numpy()). This works because the
overall scale doesn’t affect how the Huffman tree will be constructed.

Solution: See accompanying code.

e To bring the solutions into your code base, cd into your code base and then
run:

source venv/bin/activate

git stash

git checkout problem-set-3

git pull path/to/char-rnn-compression-solutions.gitbundle

e If you never cloned the original code repository from the problem set, then
run instead:

git clone path/to/char-rnn-compression-solutions.gitbundle \
char-rnn-compression

cd char-rnn-compression

python3 -m pip install virtualenv

python3 -m virtualenv -p python3 venv

source venv/bin/activate

python3 -m pip install torch tqdm unidecode numpy

e If you haven’t done so already, train the model with the following command:

python3 train.py dat/shakespeare.txt

‘https://robamler.github.io/teaching/compress23/

https://robamler.github.io/teaching/compress23/

e Then encode some text file (e.g., the test set, which is included in the gitbun-
dle at dat/shakespeare.test.txt) by running:

python3 compression.py shakespeare.pt \
dat/shakespeare.test.txt encode

This prints some statistics to the terminal and it writes the compressed bit
string to a file at dat/shakespeare.test.txt.compressed.

(e) This is the most important part of this problem set: evaluate the compres-
sion performance of your implementation on some sample texts. Try out different
kinds of texts, ranging from the test set (which should be very similar to the train-
ing set) to more modern English text (e.g., a Wikipedia page), and to text in a
different language. Compare your method’s bit rate to:

e the information content of the respective texts under the model;

the bit rate had you used Shannon coding instead of Huffman Coding;

standard lossless compression techniques such as gzip or bzip2 (make sure
you use the —-best switch when running these baselines); and to

the file size that you obtain when you take the output of your Huffman coding
based compression method and try to compress it further with gzip or bzip2.

Report your results in bits per character so that you can compare compression
performance across texts of varying lengths.

Note: This simple toy model only supports ASCII characters, so make sure that
your messages don’t contain, e.g., German umlauts, fancy quotation marks, etc.

Discuss your results: Which compression method works best? How important
is it that the training data resembles the text we end up compressing? Does com-
pressing already compressed data help? How much improvement can you expect
at most if you’d use a so-called stream code, i.e., a lossless compression code that is
not a symbol code and that can therefore be more effective than Huffman coding?

Solution: I tested the compression method on the validation and test sets, and
on plain-text versions of the Wikipedia articles on Claude Shannon in the English
and German language. The Wikipedia articles were preprocessed to ensure that
they contain only characters in the alphabet (e.g., by replacing German umlauts
with their non-umlaut counterparts). The preprocessed Wikipedia articles are
included in the gitbundle at dat/wikipedia-{en, de}.txt, and are referred to as
wikipedia-en and wikipedia-de below, respectively. Here are the results:

msg. len bits per character
(chars) | Huffman Shannon inf. cont. gzip bzip2 bzip2’
validation set | 106,864 2.38 2.72 2.12 3.43 2.82 2.40
test set | 219,561 2.38 2.73 2.12 3.33 2.65 2.38
wikipedia-en 24,618 4.99 5.67 5.14 3.22 2.92 5.14
wikipedia-de 8,426 6.77 7.70 7.19 3.96 3.76 7.22

Here, “msg. len” is the length of the uncompressed message x (number of char-
acters), “inf. cont.” is the information content, —log, pmodel(Xx), of the message
under our trained autoregressive model, and bizip2’ is the result of compressing
the output of our method (the autoregressive model with Huffman Coding) with
bzip2. Both gzip and bzip2 were always run with the --best switch.

We observe that Huffman coding with the trained model outperforms the standard
methods gzip and bzip2 on messages that are very similar to the training set, but
compression performance degrades the more the message differs in style from the
training data: the validation and test sets are both very similar to the training set,
and the model performs essentially equally well on both (which is to be expected
since I never actually used the validation set for hyperparameter tuning or early
stopping). The model performs worse on the English language Wikipedia article
and even worse on the Germen language Wikipedia article. This can be explained
since modern English language is different from the Shakespeare training text, but
still closer to it than German language text.

We further observe that Huffman Coding performs better than Shannon Coding (as
expected since both are symbol codes but only the Huffman Code is guaranteed to
always be an optimal symbol code). Further, both Huffman Coding and Shannon
Coding have an overhead over the information content when evaluated on the
validation and test set, as expected. Interestingly, however, the bit rate of Huffman
Coding on the Wikipedia articles is actually lower than the information content.
This is an artefact of symbol codes, as the restriction to integer code word lengths
has a regularizing effect: symbol codes have to spend at least one bit for every
symbol, even for very probable symbols whose information content is much smaller
than one bit; but, conversely, this also means that symbol codes can assign code
words that are considerably shorter than the information content to symbols of
very low probability without violating the Kraft inequality. Thus, the code word
lengths in a symbol code tend to be more level than the true information contents.

This regularization effect is typically a poor trade off because slightly longer code
words for frequent symbols outweigh the potential benefits even of considerably
shorter code words for infrequent symbols. But if the model is evaluated on out-
of-distribution data, as we do here, then the probabilities under the model are a
poor prediction of true symbol frequencies, and having a more level distribution
of code word lengths can actually become beneficial.

Finally, we observe in the last column of the table that further compressing the
already compressed output of our Huffman Coder does not actually reduce the file

size. In contrast, it usually even makes things worse, even on the out-of-distribution
data where our method performs poorly. This is because bzip2 compresses its in-
put data by detecting repeated byte sequences. But a good compression algorithm
should create binary output that is indistinguishable from random data. As we’ve
learned in the lecture, there’s no silver bullet in compression: you always have to
make assumptions about the data source—typically in the form of a probabilistic
model. In the case of bizip2’, the model that the bzip2 algorithm (implicitly)
uses just doesn’t match the true characteristics of our Huffman Coder. []

(f) Implement a decoder and verify empirically for some sample text that decoding an
encoded message reconstructs the original message. Use the Huf fmanDecoder class
that you implemented on Problem Set 2 and the function read bits from file
that is provided to you in the file bitutils.py.

Hint: the method decode on the HuffmanDecoder class is a generator func-
tion that allows you to decode several symbols in sequence, reusing the same
Huf fmanDecoder. However, in this autoregressive model, you have to construct a
new HuffmanDecoder for each character. Therefore, you’ll only want to decode a
single character each time. You can use the builtin next function to do this:

character_index = next(huffman_decoder.decode(bit_iterator))

Here, character_index is an integer that represents a single character according
to conventions that are specific to this machine-learning model. In order to turn
character_index into an actual printable character, have a look at how this is
done in generate.py.

Solution: See again accompanying code in the file compression.py. You can
execute the decoder by running:

python3 compression.py shakespeare.pt \
dat/wikipedia-de.txt encode

python3 compression.py shakespeare.pt \
dat/wikipedia-de.txt.compressed \
decode > dat/wikipedia-de.txt.decompressed

shalsum dat/wikipedia-de.txt dat/wikipedia-de.txt.decompressed

The last command should print the same checksum for both files. |

Congratulations, you have implemented your first machine-learning based compression
method! We’ll improve upon this method on Problem Set 6.

10

Problem 3.3: A Different Kind of Trolley Problem

Don’t let the title scare you away, we won'’t be doing any pretentious
pseudophilosophy here. But we’ll solve a problem that has nothing vee
to do with data compression—or does it?

Imagine you are designing a train station with n platforms labeled
{1,...,n} (blue rectangles in illustration). Each platform serves a
single railroad track (gray lines), and all tracks enter the station from
the same direction and terminate at the station. You may order the \
platforms {1,...,n} arbitrarily, but they must be arranged next to
each other and in parallel, as in the illustration.

Here’s the difficult part: the train station will serve n different types of trains, and each
platform ¢ € {1,...,n} can serve only trains of type i (think of cargo trains with different
kinds of cargo, such as containers, gasoline, lumber, and coal, where each type of cargo
requires a designated platform with specialized equipment for loading and unloading).
The various types of trains have varying average physical weights, and they arrive at
the station with varying frequencies. We denote by w; > 0 the total physical weight (in
tons) of trains of type ¢ that we expect to arrive at the station per year.

A single track leaves the train station and is connected to all platforms via some
switches (highlighted red in the illustration). Your task is to come up with an arrange-
ment of switches and a convenient order in which to arrange the platforms {1,...,n}.
Each switch splits one track into two. Unfortunately, switches are fragile structures:
each time a train passes over a switch, the switch takes some damage proportional to
the train’s weight. How would you come up with a setup that uses as few switches as
possible, and that minimizes the total damage on all switches per year for given (w;)",?

1

Note: This is problem is obviously contrived. But similar optimization problems are
conceivable in sampling problems in statistics, in planning problems (e.g., when a robot
explores a sequential decision space), or in routing problems for computer networks.

Solution: For any arrangement that uses as few switches as possible, there can only
be one path between each platform and the single track that connects to the outside
world. If there were two or more paths, then one of them would be redundant, and
cutting it would allow us to remove a switch. Thus, the arrangement of switches forms
a tree whose leaf nodes are the platforms, whose non-leaf nodes are the switches, and
whose root node is the switch that is connected to the single track that connects to the
outside world. The tree is a binary tree since each switch splits one track into two.

All binary trees over n leaves have the same number (n—1) of non-leaf nodes (switches).
In order to find the optimal binary tree, we have to minimize the total damage to all
switches per year, which is proportional to W := " | w;{; where ¢; is the number of
switches that a train of type ¢ has to traverse in order to get to its designated platform
(i.e., £; is the depth of platform i in the tree). We already know an algorithm that
optimizes an objective of the form W := """ w;l; over binary trees: Huffman coding. If
we interpret the platforms ¢ as symbols in an alphabet, each weight w; as the probability

11

of symbol 7, and the tree formed by the railroad tracks as a trie that defines a prefix code
on the alphabet, then ¢; becomes the length of the code word for symbol i, and W is the
expected code word length, which Huffman coding minimizes. We can therefore apply
Huffman coding to find an optimal tree structure. We can turn the tree into a planar
network of railroad tracks (i.e., where no railroad tracks cross each other) by sorting the
platforms {1,...,n} lexicographically by their Huffman code words.

Note: at a more precise inspection, this analogy is lacking: there is no reason to
assume that »)" w; = 1 (or even that w; < 1Vi). Therefore, we cannot interpret w; as
a probability. Fortunately, the proof of optimality of Huffman coding does not rely on
these assumptions, so the theorem actually holds for arbitrary (positive) weights. |

12

	Kullback-Leibler Divergence
	Lossless Compression of Natural Language With Recurrent Neural Networks
	A Different Kind of Trolley Problem

