
Problem Set 3 published: 3 May 2023
discussion: 10 May 2023

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tübingen

Course materials available at https://robamler.github.io/teaching/compress23/

Problem 3.1: Kullback-Leibler Divergence

In the lecture, we introduced the Kullback-Leibler (KL) divergence, or relative en-
tropy, DKL. The KL-divergence is an information-theoretical measure of mismatch be-
tween two probability distributions. We discussed that DKL

(
pdata(x)

∣∣∣∣ pmodel(x)
)
quanti-

fies by how much the expected bit rate of an optimal lossless compression code increases
when we use a model pmodel that does not perfectly match the (unknown) distribution
pdata of the true data generative process. Thus, the KL-divergence is defined as follows,

DKL

(
pdata(x)

∣∣∣∣ pmodel(x)
)
:= H(pdata, pmodel)−H(pdata). (1)

The KL-divergence is a useful quantity in more than just data compression. For ex-
ample, we will see it come up again when we introduce variational inference in Lecture 8.

(a) Convince yourself that the following two expressions are valid formulations of the
KL divergence:

DKL

(
p(x)

∣∣∣∣ q(x)) = Ex∼p

[
log p(x)− log q(x)

]
= Ex∼p

[
log

p(x)

q(x)

]
(2)

Here, the notation Ex∼p[f(x)] :=
∑

x p(x)f(x) denotes the expectation value of
some function f under the probability distribution p. (In practice, we sometimes
can’t evaluate p(x) and therefore can’t calculate the weighted sum over all x, but
we might be able to estimate Ex∼p[f(x)] by averaging f(x) over samples from a
finite training set or test set, as discussed in the lecture.)

Note: This is a fairly trivial exercise but Eqs. 1 and 2 are both important to
remember.

(b) Since DKL measures the overhead in expected bit rate over its lower bound we kind
of already know that it cannot be negative. But let’s prove this in a more direct
way. The proof uses Jensen’s inequality (see Figure 1 on the next page), which
states that, for any convex function f and any probability distribution p, we have:

f
(
Eξ∼p[ξ]

)
≤ Eξ∼p

[
f(ξ)

]
(for convex f). (3)

Prove that DKL

(
p(x)

∣∣∣∣ q(x)) ≥ 0 for all probability distributions p and q by using
Eq. 2, Jensen’s inequality, and the fact that the function f(ξ) := − log ξ is convex.

Note: Jensen’s inequality (Eq. 3) is a very useful relation that often comes up
when proving bounds in information theory and in approximate Bayesian inference
(scheduled for Lecture 8).

1

https://robamler.github.io/teaching/compress23/


Figure 1: Illustration of Jensen’s inequality (Eq. 3). Left: E[f(ξ)] for some convex func-
tion f . Center: f(E[ξ]) for the same convex function f . Right: E[g(ξ)]) where
g is the affine linear function whose graph (blue) is a tangent to f , touching
it at the point (E[ξ], f(E[ξ])). Since f is convex, the tangent g to it satisfies
g(ξ) ≤ f(ξ) ∀ξ and thus E[g(ξ)] ≤ E[f(ξ)]. Further, since g is affine linear, it
can be pulled out of the expectation: E[g(ξ)] = g(E[ξ]) = f(E[ξ]). Thus, in
total, f(E[ξ]) ≤ E[f(ξ)] for any convex function f , as claimed in Eq. 3.

Problem 3.2: Lossless Compression of Natural Language
With Recurrent Neural Networks

This zip-file contains code for a simple character-based autoregressive language model,
forked from a GitHub repository1 by Sean Robertson. You will learn more about au-
toregressive models in the next lecture, but Figure 2 on the next page should tell you
enough to solve this problem.
In this problem, you will train the model and then turn it into a compression method,

whose performance you evaluate empirically. Although your resulting compression method
will already be quite effective (considering its simplicity), it will still waste some bit rate,
and it will also be very slow. You will improve upon it in upcoming problem sets as you
learn more about deep probabilistic models and entropy coders.
The code comes as a git bundle. To extract it, run:

git clone path/to/char-rnn-compression.gitbundle char-rnn-compression

You’ll also need the python packages PyTorch, numpy, tqdm, and unidecode. You can
install them, e.g., as follows (or use your favorite package manager instead):

cd char-rnn-compression

python3 -m pip install virtualenv

python3 -m virtualenv -p python3 venv

source venv/bin/activate

python3 -m pip install torch tqdm unidecode numpy

Once everything is set up, it’s time to get your hands dirty.

1https://github.com/spro/char-rnn.pytorch

2

https://github.com/spro/char-rnn.pytorch


Figure 2: Autoregressive model for character based text generation. a) The training
algorithm minimizes the cross entropy between the true distribution of English
text (estimated via samples from a training set) and a probabilistic model
parameterized by a so-called recurrent neural network. The model reads text
character by character (bottom row). After reading character i, the model
parameterizes a probability distribution pmodel,i+1 over the next character. The
training algorithm then tries to minimize the information content of the correct
next character (top row) under pmodel,i+1. b) In addition to a training objective,
the model implementation also already comes with a function generate that
samples from a trained model. The function draws a random first character
x1 ∼ pmodel,1, prints it, then feeds it back into the model in order to calculate
pmodel,2, from which the function draws the next character x2, and so on.

(a) The repository contains some toy data set of historic English text2 in the direc-
tory dat, together with a canonical random split (by lines) into training, validation,
and test set. Train the model on the training set by executing:

python3 train.py dat/shakespeare.txt

Training this small model doesn’t require any fancy hardware; it should only take
about 10 to 20 minutes on a regular consumer PC.

The script will use the training set at dat/shakespeare.train.txt. Before train-
ing and after every tenth training epoch, the script will evaluate the model’s per-
formance on the validation set (dat/shakespeare.val.txt) and it will print out
the cross entropy (to base 2). In regular intervals, the script will also print out
some samples from the model (i.e., random generated text). You should be able
to observe that the cross entropy decreases (because that’s the objective function
that the training procedure minimizes), and the generated text should resemble
more and more the kind of text you can find in the training set. At the end of
training, the cross entropy should oscillate roughly around 2 bits per character.

The trained model will be saved to a file named shakespeare.pt. You can now
evaluate it on the validation or test set:

python3 evaluate.py shakespeare.pt dat/shakespeare.val.txt

python3 evaluate.py shakespeare.pt dat/shakespeare.test.txt

2Downloaded from https://raw.githubusercontent.com/karpathy/char-rnn/master/data/

tinyshakespeare/input.txt

3

https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt


(b) While the model is training, familiarize yourself with the code in evaluate.py

and in generate.py, and try to understand what the functions evaluate and
generate do. What does calling torch.multinomial(output dist, 1) in the
function generate achieve, and what quantities does output dist contain?

Note: Both evaluate and generate take an argument named decoder. Despite
its name, this argument is not a decoder in the sense of data compression. It is just
the trained model (the original code base had no relation to data compression).

(c) You should have observed that the function generate generates random text. This
is possible because the trained model parameterizes a probability distribution pmodel

over character sequences, so one can draw random samples from this distribution.
However, in a compression application, we don’t want to generate random text.
We want the receiver to be able to deterministically decode the exact same text
that the sender encoded. How can you achieve this using the trained probabilistic
model and an entropy coder. Make a sketch similar to Figure 2 to illustrate how
you would approach encoding and decoding. Where do you generate/consume code
words and what probability distributions do you use to build the corresponding
code books?

(d) Let’s now implement the encoder. Create a new file compression.py and paste
your implementations of HuffmanEncoder and HuffmanDecoder from Problem
Sets 1 and 2 into it (if you didn’t solve these problem sets, use the solutions from
the course website3). Then implement a function encode huffman with signature

def encode_huffman(model, message):

Here, the argument model is a trained model (the same as the confusingly named
decoder argument in the function evaluate), and the argument message is a
string of English text. The function should compress message using Huffman
coding, and yield the resulting sequence of bits (boolean values). Once the entire
message has been processed, the function should print some relevant statistics,
such as the total bit rate, the total information content, and the bit rate that you
would have obtained had you used Shannon coding instead of Huffman coding.

Your implementation of encode huffman will be similar to the function evaluate.
Remember that the autoregressive model builds a new probability distribution for
each character, so you’ll have to build up a new Huffman tree for each character.

Then turn your implementation into an executable script by parsing some ap-
propriate command line arguments (similar to how it is done in evaluate.py),
reading message from a text file, and writing the compressed representation to a
new (binary) file. You can use the utilities provided to you in bitutils.py for
generating a binary file (bring them into scope with from bitutils import *).

Hint: you can apply the Huffman coding algorithm directly to an unnormalized
probability distribution (i.e., to logits.exp().numpy()). This works because the
overall scale doesn’t affect how the Huffman tree will be constructed.

3https://robamler.github.io/teaching/compress23/

4

https://robamler.github.io/teaching/compress23/


(e) This is the most important part of this problem set: evaluate the compres-
sion performance of your implementation on some sample texts. Try out different
kinds of texts, ranging from the test set (which should be very similar to the train-
ing set) to more modern English text (e.g., a Wikipedia page), and to text in a
different language. Compare your method’s bit rate to:

• the information content of the respective texts under the model;

• the bit rate had you used Shannon coding instead of Huffman Coding;

• standard lossless compression techniques such as gzip or bzip2 (make sure
you use the --best switch when running these baselines); and to

• the file size that you obtain when you take the output of your Huffman coding
based compression method and try to compress it further with gzip or bzip2.

Report your results in bits per character so that you can compare compression
performance across texts of varying lengths.

Note: This simple toy model only supports ASCII characters, so make sure that
your messages don’t contain, e.g., German umlauts, fancy quotation marks, etc.

Discuss your results: Which compression method works best? How important
is it that the training data resembles the text we end up compressing? Does com-
pressing already compressed data help? How much improvement can you expect
at most if you’d use a so-called stream code, i.e., a lossless compression code that is
not a symbol code and that can therefore be more effective than Huffman coding?

(f) Implement a decoder and verify empirically for some sample text that decoding an
encoded message reconstructs the original message. Use the HuffmanDecoder class
that you implemented on Problem Set 2 and the function read bits from file

that is provided to you in the file bitutils.py.

Hint: the method decode on the HuffmanDecoder class is a generator func-
tion that allows you to decode several symbols in sequence, reusing the same
HuffmanDecoder. However, in this autoregressive model, you have to construct a
new HuffmanDecoder for each character. Therefore, you’ll only want to decode a
single character each time. You can use the builtin next function to do this:

character_index = next(huffman_decoder.decode(bit_iterator))

Here, character index is an integer that represents a single character according
to conventions that are specific to this machine-learning model. In order to turn
character index into an actual printable character, have a look at how this is
done in generate.py.

Congratulations, you have implemented your first machine-learning based compression
method! We’ll improve upon this method on Problem Set 6.

5



Problem 3.3: A Different Kind of Trolley Problem

Don’t let the title scare you away, we won’t be doing any pretentious
pseudophilosophy here. But we’ll solve a problem that has nothing
to do with data compression—or does it?
Imagine you are designing a train station with n platforms labeled

{1, . . . , n} (blue rectangles in illustration). Each platform serves a
single railroad track (gray lines), and all tracks enter the station from
the same direction and terminate at the station. You may order the
platforms {1, . . . , n} arbitrarily, but they must be arranged next to
each other and in parallel, as in the illustration.
Here’s the difficult part: the train station will serve n different types of trains, and each

platform i ∈ {1, . . . , n} can serve only trains of type i (think of cargo trains with different
kinds of cargo, such as containers, gasoline, lumber, and coal, where each type of cargo
requires a designated platform with specialized equipment for loading and unloading).
The various types of trains have varying average physical weights, and they arrive at
the station with varying frequencies. We denote by wi > 0 the total physical weight (in
tons) of trains of type i that we expect to arrive at the station per year.
A single track leaves the train station and is connected to all platforms via some

switches (highlighted red in the illustration). Your task is to come up with an arrange-
ment of switches and a convenient order in which to arrange the platforms {1, . . . , n}.
Each switch splits one track into two. Unfortunately, switches are fragile structures:
each time a train passes over a switch, the switch takes some damage proportional to
the train’s weight. How would you come up with a setup that uses as few switches as
possible, and that minimizes the total damage on all switches per year for given (wi)

n
i=1?

Note: This is problem is obviously contrived. But similar optimization problems are
conceivable in sampling problems in statistics, in planning problems (e.g., when a robot
explores a sequential decision space), or in routing problems for computer networks.

6


	Kullback-Leibler Divergence
	Lossless Compression of Natural Language With Recurrent Neural Networks
	A Different Kind of Trolley Problem

