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Note on the Length of This Problem Set

Each question in Problems 4.2-4.4 below can be answered with a one-sentence
argument or a single line of calculations (except for two questions ones marked
with an asterisk (“*”)). So don’t try to be overly formal; our goal here is to find
concise arguments that will help you get an intuition for several important information-
theoretical concepts. But pay attention to details: some relations are surprisingly subtle.

How to Use This Problem Set to Study for the Exam

In Problems 4.2-4.4 below, you will derive several | Hp(X) ; He(Y) |

important information-theoretical relations, which

are summarized in the figure on the right. | Hp((X. V) [1p(X: ¥)
When you first solve this problem set, you should | Hp(X) | He(Y1X) |

use it as an opportunity to recap and expand on

the content of the lecture; later, you’ll be able to |Hp(X|Y)§ Hp(Y) |

refer back to this problem set and the figure on the
right as a self-contained reference sheet of important information-theoretical relations.

Problem 4.1: Statistical Independence

In the lecture, we formalized a probabilistic model of our Simplified Game of Monopoly,
which consists of throwing two fair three-sided dice (a red one and a blue one) and then
recording their sum. For completeness, here’s the model:

e sample space: @ = {(a,b) where a,b€ {1,2,3}}

e sigma algebra: 3 =29 := {all subsets of Q (including () and Q)}

e probability measure P: for all E € ¥, let P(E) := |E|/|Q = |E|/9
We further defined three random variables, i.e., functions from €2 to R:

e total value of a dice throw: Xsum((a, b)) =a+b

e value of the red die: X,eq((a,b)) =a

e value of the blue die: Xblue((a, b)) =)

ladapted from the book “Information Theory, Inference, and Learning Algorithms” by David MacKay.


https://robamler.github.io/teaching/compress23/

Now, verify the following claims from the lecture:

(a) Convince yourself that P is a valid probability measure (i.e., P(Q2) = 1, P(0) = 0,
and P satisfies countable additivity).

(b) Show that X,eq and Xy, are statistically independent.

(¢) Show that X;eq and Xy, are not statistically independent.

Problem 4.2: Joint and Conditional Information Content

In the lecture, we identified the quantity “—log, P(X =x)” as the information content
of the statement “X =z” (meaning “the random variable X has value z”) w.r.t. a prob-
ability distribution P. We further discussed in Lecture 2 that the information content
of a given (long) message is the bit rate (up to tiny corrections) that one would obtain
when compressing the message with a lossless code that is optimal for the model P. In
this problem, you’ll analyze how many bits each symbol in the message contributes to
the information content (and therefore the bit rate) of the full message.

We’ll only look at two random variables X and Y here. The generalization to more
than two random variables is analogous. We further assume that X and Y are both
discrete since we didn’t define information content for continuous random variables.

(a) Joint Information Content: In the notation introduced in the lecture, the joint
information content of the statement “X = x and Y = y” or, equivalently, the
information content of the statement “(X,Y’) = (x,y)”, can be written as follows,

—log, P(X=2,Y =y) == —log, P((X,Y) = (,y))
= —log, P{weQ: X(w)=2 A Y(w)=y}). (1)

)

Argue why the joint information content of “(X,Y) = (z,y)” is not smaller than
the information content of “X = 2” and not smaller than the information con-
tent of “Y =y” (hint: the information content of “X = 2" is —log, P(X =x) =
—log, P({w € Q: X (w) = z}); identify a superset-subset relationship).

(b) Marginal and Conditional Information Content: We refer to the information
content of “X =" alone, —log, P(X =), as the marginal information content.
We further define the conditional information content of “Y =9” given X =z as
—logy, P(Y =y | X =x), where P(Y =y| X =z) = P(X=2,Y=y)/P(X=x) as
defined in the lecture. Show the chain rule of information content, which states:

The joint information content of “(X,Y) = (z,y)” is the sum of
the marginal information content of “X = z” and the conditional
information content of “Y =y” given X =ux.

What does this imply for lossless compression? If you want to compress the two
symbols z and y in an optimal way, and you want to encode one after the other,
what probabilistic model should you use for encoding x and y, respectively.



(c¢*) Nonadditivity of Marginal Information Content: In Problem 2.3 (b) of
Problem Set 2, you showed (although using different notation) that if X and Y are
statistically independent, then the joint information content of “(X,Y) = (z,y)”
is the sum of the two marginal information contents of “X =" and “Y =y”. This
statement is not necessarily true if X and Y are not statistically independent.

Provide examples of simple probabilistic models

(i) where the sum of the two marginal information contents of “X = z” and

“Y =1y” for some z and y is larger than the joint information content of
“X,Y) = (x,y)”; and

(ii) where the sum of the two marginal information contents of “X = z” and

“Y'=1vy” for some x and y is smaller than the joint information content of
“X,Y) = (x,y)".

For both cases (i) and (ii), use the chain rule of information content from part (b)
to relate the marginal information content — log, P(Y =y) to the conditional in-
formation content —log, P(Y =y | X =xz) . Does conditioning on X =z increase
or reduce the information content in each of the two cases?

Note: You will show below that one of these cases (i) or (ii) can be regarded as
the “typical” case whereas the other one is somewhat of an exception. Using your
intuition about information content, can you guess which case is the typical one?

Problem 4.3: Joint and Conditional Entropy

In the lecture, we defined the entropy Hp(X) of a random variable X as its expected
information content, i.e., Hp(X) = Ep[—log, P(X)]. Analogous to Problem 4.2, where
we analyzed interactions between information contents of two random variables X and Y,
let’s now analyze interactions between their entropies. We will again assume that X
and Y are discrete random variables since entropy is not defined for continuous random
variables (only a so-called differential entropy is defined for these).

(a) Joint Entropy: The joint entropy of X and Y is simply the entropy of the tuple
(X,Y) (interpreted as a random variable that maps w — (X (w),Y (w))). We will
explicitly denote the joint entroy as H p((X , Y)) (with double braces) to highlight
the distinction from the cross entropy.? Argue, by applying what you’ve shown in
Problem 4.2 (a), that Hp((X,Y)) > Hp(X) and that Hp((X,Y)) > Hp(Y).

Marginal and Conditional Entropy: The entropy of X alone, Hp(X), is also called
the marginal entropy. We further define two kinds of conditional entropies:

(b*) Hp(Y | X = z) denotes the conditional entropy of Y if we know that X takes a
specific value z. In other words, Hp(Y | X =x) is the entropy of the distribution

2This is not really standard notation. In the literature, you may find the notation “H(X,Y)” used
for either the cross entropy or the joint entropy, depending on context.



P(Y | X =x), interpreted as a distribution over values of Y. It is thus given by

Hp(Y | X =) = Epyjx=a) [~ logy P(Y | X =1)] (2)
=-Y P(Y=y|X=x1)log, P(Y=y|X=n).

Y

Show (by providing an example for both cases) that Hp(Y | X =x) can be both
larger and smaller than Hp(Y).

Note: In Problem 4.4 (c¢) below, you will show that, in expectation over X, the
conditional entropy Hp(Y | X) (see Eq. 3 below) cannot be larger than the marginal
entropy Hp(Y'). Thus, conditioning on some X =x typically reduces the entropy
of Y, but there may be some specific values of x where the opposite is the case.

The notation Hp(Y | X) denotes the ezpected conditional entropy, i.e., the expec-
tation value of Hp(Y | X =x) from part (b), where the expectation is taken over x:

Hp(Y | X) =) P(X=x)Hp(Y|X=x) (3)
=-Y P(X=2)) P(Y=y|X=x1)log, P(Y=y|X=x)
=—) P(X=zY=y)log, P(Y=y| X =x)

=Ep [7 —log, P(Y | X)].

Use the chain rule of information content from Problem 4.2 (b) to show the chain
rule of the entropy (visualized in the lower parts of the figure on page 1):

Hp((X,Y)) = Hp(X) + Hp(Y | X) = Hp(Y) + Hp(X | Y). (4)
What are the joint entropy H p((X , Y)) and the two types of conditional entropy,

Hp(Y | X=x)and Hp(Y | X), if the two random variables X and Y are statistically
independent, i.e., if P(X,Y) = P(X)P(Y)?

Problem 4.4: Mutual Information and Subadditivity of

Entropies

We now show that entropies of two random variables X and Y are subadditive, i.e.

Hp((X,Y)) < Hp(X) + Hp(Y), (5)

This is an important result as it implies that modeling symbols in a message indepen-
dently leads to suboptimal compression performance. As discussed in the lecture, one
should instead consider a probabilistic model of the entire message.



To show Eq. 5, we define the mutual information Ip(X;Y') between X and Y,
Ip(X;Y) = Hp(X) + Hp(Y) — Hp((X,Y)). (6)
See the first two rows of the figure on page 1. We then show that Ip(X;Y) > 0:

(a) Convince yourself that the mutual information can be expressed as follows,

P(X.,Y)
Ip(X;Y)=Ep |logy ———— 7
P( ) ) P |:Og2 P(X) P(Y):| ( )
Then use Eq. 2 from last week’s problem set to express Ip(X;Y) as a Kullback-
Leibler divergence between two distributions (which two?). Thus, Ip(X;Y) >0
since Kullback-Leibler divergences are nonnegative, as you proved in Problem 3.1 (b).

While we're at it, let’s show two more important properties of the mutual information:

(b) Mutual information is symmetric: convince yourself that Ip(X;Y) = Ip(Y; X).

(c) Mutual information measures “Information Gain”: combine Egs. 4 and 6
to show that the mutual information can also be expressed as follows (illustrated
in the last three rows of the figure on page 1),

Ip(X;Y) = Hp(X) — Hp(X|Y) (8)
— Hp(Y) - Hp(Y | X). (9)

Note: Since Ip(X;Y) > 0, Eq. 9 implies that Hp(Y | X) < H(Y'). Thus, while con-
ditioning on a specific X =x may increase the conditional entropy Hp(Y | X =2)
compared to Hp(Y') (see Problem 4.3 (b)), in expectation, conditioning can only
decrease the entropy (or keep it unchanged at worst).

Interpretation of Eqgs. 8-9: By the source coding theorem, the entropy Hp(X) mea-
sures the expected number of bits that someone needs to tell us in order to communicate
the value of X. Thus, we can interpret entropy as “amount of uncertainty” or “lack of
information” that the receiver has before the communication takes place. Then, the
interpretation of Eq. 8 is that the mutual information Ip(X;Y") measures by how much
our uncertainty about X decreases (= how much information we gain about X), in
expectation, if someone tells us the value of Y. In fact, Ip(X;Y) is also called “infor-
mation gain” in some contexts. This interpretation will become helpful when we discuss
lossy compression. Analogously, according to Eq. 9, Ip(X;Y') also measures how much
information we gain about Y, in expectation, if someone tells us the value of X.

(d) Mutual information quantifies the degree of statistical dependency: what
is the mutual information Ip(X;Y) if X and Y are statistically independent?
Interpret this also in words using the above interpretation of mutual information:
if X and Y are statistically independent (e.g., if they represent the red and the blue
die in our Simplified Game of Monopoly), then how much do you learn about X
if someone tells you the value of Y, or vice versa?
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