Solutions to Problem Set 5

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tübingen
Course materials available at https://robamler.github.io/teaching/compress23/

Problem 5.1: Conditional Independence

In last week's lecture, we learned that every probability distribution P satisfies the so-called chain rule of probability theory. For example, for any three random variables X, Y, and Z, we can always factorize their joint probability distri-
 bution as follows (see illustration on the right),

$$
\begin{equation*}
P(X, Y, Z)=P(X) P(Y \mid X) P(Z \mid X, Y) \tag{1}
\end{equation*}
$$

We then introduced the concept of conditional (statistical) independence between two random variables X and Z given a third random variable Y, which is defined analogously to the ordinary (i.e., unconditional) statistical independence as follows,
X and Z are conditionally independent given $Y: \Leftrightarrow P(X, Z \mid Y)=P(X \mid Y) P(Z \mid Y)$.
(a) Show that conditional independence between X and Z given Y means that, once you know the value of Y, learning about the value of X would not provide any additional information about Z, i.e.,

$$
\begin{equation*}
X \text { and } Z \text { are cond. independ. given } Y \quad \Leftrightarrow \quad P(Z \mid X, Y)=P(Z \mid Y) . \tag{3}
\end{equation*}
$$

Solution: Eq. 3 follows by solving Eq. 2 for $P(Z \mid Y)$:

$$
\begin{aligned}
& P(X, Z \mid Y)=P(X \mid Y) P(Z \mid Y) \\
\Leftrightarrow & P(Z \mid Y)=\frac{P(X, Z \mid Y)}{P(X \mid Y)}=\frac{P(X, Y, Z)}{P(Y)} \frac{P(Y)}{P(X, Y)}=\frac{P(X, Y, Z)}{P(X, Y)}=P(Z \mid X, Y) .
\end{aligned}
$$

Remark: Eq. 3 implies that, if and only if X and Z are conditionally independent given Y, then the chain rule from Eq. 1 simplifies as follows (see illustration on the right),

$$
\begin{equation*}
X \text { and } Z \text { are cond. indep. given } Y \Leftrightarrow P(X, Y, Z)=P(X) P(Y \mid X) P(Z \mid Y) \tag{4}
\end{equation*}
$$

We refer to the property expressed by Eq. 4 also by saying that X, Y, and Z form a Markov chain $X \rightarrow Y \rightarrow Z$. A Markov chain can be interpreted as a memoryless stochastic process: if you want to draw a random sample from a Markov chain, then you can proceed as follows: first, draw a random sample $x \sim P(X)$, then draw $y \sim$ $P(Y \mid X=x)$, and finally draw $z \sim P(Z \mid Y=y)$. Notice that, once you've drawn y, you no longer need to keep x in memory because you won't need it for drawing z.

Markov chains play an important role in information theory since communication pipelines can typically be modeled as chains of memoryless stages, where each stage transforms the communicated data into some new representation. We'll meet Markov chains again when we discuss channel coding and lossy compression, and you'll prove an important bound on how information propagates along a Markov chain - the so-called data processing inequality-on Problem Set 10.

Comparison to ordinary independence: we now show that conditional independence is neither a stronger nor a weaker property than ordinary statistical independence.
(b) Show that two random variables X and Z can be statistically independent even if they are not conditionally independent given some third random variable Y.

Hint: Consider our Simplified Game of Monopoly. You already showed in Problem 4.1 (b) that $X_{\text {red }}$ and $X_{\text {blue }}$ are statistically independent. Now show that $X_{\text {red }}$ and $X_{\text {blue }}$ are, however, not conditionally independent given $X_{\text {sum }}$.

Solution: By definition, conditional independence holds if and only if the two probability distributions on the left and right-hand sides of Eq. 2 are equal. Two probability distributions are equal if they assign the same probabilities to all possible inputs. Thus, in order to show that $X_{\text {red }}$ and $X_{\text {blue }}$ are not conditionally independent given $X_{\text {sum }}$, we only have to find a single triple of values $x_{\text {red }}, x_{\text {blue }}$, and $x_{\text {sum }}$ for which

$$
\begin{aligned}
& P\left(X_{\text {red }}=x_{\text {red }}, X_{\text {blue }}=x_{\text {blue }} \mid X_{\text {sum }}=x_{\text {sum }}\right) \\
& \quad \neq P\left(X_{\text {red }}=x_{\text {red }} \mid X_{\text {sum }}=x_{\text {sum }}\right) P\left(X_{\text {blue }}=x_{\text {blue }} \mid X_{\text {sum }}=x_{\text {sum }}\right) .
\end{aligned}
$$

You can easily find many examples for $x_{\text {red }}, x_{\text {blue }}$, and $x_{\text {sum }}$ for which this is the case. For example, we have

$$
P\left(X_{\text {red }}=1, X_{\text {blue }}=1 \mid X_{\text {sum }}=3\right)=0
$$

but, according to our example in the lecture notes for Lecture 4,

$$
P\left(X_{\mathrm{red}}=1 \mid X_{\mathrm{sum}}=3\right) P\left(X_{\mathrm{blue}}=1 \mid X_{\mathrm{sum}}=3\right)=\frac{1}{2} \times \frac{1}{2} \neq 0 .
$$

Intuitively, this makes sense: the red and the blue die are thrown independently of each other, but if we're told their sum then the equation $X_{\text {red }}+X_{\text {blue }}=X_{\text {sum }}$ introduces a constraint that ties $X_{\text {red }}$ and $X_{\text {blue }}$ together.
(c) Show that two random variables X and Z can be conditionally independent given some third random variable Y even if X and Z are not statistically independent.
Hint: Any (nontrivial) Markov process $X \rightarrow Y \rightarrow Z$ will do: conditioning on Y "cuts" the dependency between X and Z. For example, consider a sequence of three coin tosses and let X, Y, and Z be the number of times that the coin comes up "heads" in the first, the first two, and all three tosses, respectively. Find an expression for $P(Z \mid X, Y)$ without being overly formal (think about the experimental setup and the interpretation of conditional probability rather than its formal mathematical definition). Then convince yourself that X and Z are conditionally independent given Y by Eq. 3. Show by providing a counter example that, without conditioning on Y, then X and Z are not statistically independent.

Solution: Assuming a fair coin for simplicity, we have

$$
P(Z \mid X, Y)= \begin{cases}\frac{1}{2} & \text { if } Z \in\{Y, Y+1\} \\ 0 & \text { otherwise }\end{cases}
$$

Here, the fact that the right-hand side does not depend on X means that conditioning on X is unnecessary, i.e., $P(Z \mid X, Y)=P(Z \mid Y)$ and thus X and Z are conditionally independent given Y by Eq. 3. However, without conditioning on Y, we have, e.g.,

$$
P(X=1, Z=0)=0 \quad \text { but } \quad P(X=1) P(Z=0)=\frac{1}{2} \times \frac{1}{8} \neq 0
$$

Thus, X and Z are not statistically independent.

Problem 5.2: Expressiveness of Probabilistic Models

In the lecture, we introduced various model architectures to efficiently approximate complicated probability distributions. Let us now analyze how expressive each of these architectures is. In particular, we analyze whether each of the proposed architecture can model correlations between symbols in a message, i.e., the fact that, in messages that appear in the real world, symbols are typically not statistically independent. All models below describe a message $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ where each symbol $X_{i}, i \in\{1,2, \ldots, k\}$ is modeled as a random variable with values from some discrete alphabet \mathfrak{X}.

The four parts (a)-(d) of this problem can be solved independently. So don't give up if you have troubles solving one of the parts.
(a) Fully factorized models: before we look at more complicated model architectures below, let's consider the most trivial model architecture, which assumes that all symbols $X_{i}, i \in\{1,2, \ldots, k\}$ are statistically independent. Such a model is often called "fully factorized" because the joint probability distribution $P(\mathbf{X})$ of
the message \mathbf{X} can be written as a product of the marginal distributions:

$$
\begin{equation*}
P_{\mathrm{model}}(\mathbf{X})=\prod_{i=1}^{k} P_{\mathrm{model}}\left(X_{i}\right) \tag{5}
\end{equation*}
$$

Here, we reinstated the subscript "model" because we want to search for the best model, $P_{\text {model }}^{*}(\mathbf{X})$, that can be written in the form of Eq. 5 and that best approximates some data distribution $P_{\text {data }}(\mathbf{X})$, which is typically not fully factorized.
(i) Consider the cross entropy $H\left(P_{\text {data }}(\mathbf{X}), P_{\text {model }}(\mathbf{X})\right)$. Convince yourself that, for a model of the form of Eq. 5 (warning: but not for more general models),

$$
H\left(P_{\text {data }}(\mathbf{X}), P_{\text {model }}(\mathbf{X})\right)=\sum_{i=1}^{k} H\left(P_{\text {data }}\left(X_{i}\right), P_{\text {model }}\left(X_{i}\right)\right) \quad \text { (if Eq. } 5 \text { holds) }(6)
$$

where $P_{\text {data }}\left(X_{i}\right)$ is the marginal distribution of X_{i} under $P_{\text {data }}$ (i.e., the distribution that you obtain if you marginalize $P_{\text {data }}(\mathbf{X})$ over all X_{j} with $\left.j \neq i\right)$.

Solution: We simply write out the cross entropy on the left-hand side of Eq. 6, use linearity of the expectation, and then marginalize each term over all X_{j} with $j \neq i$. For your reference, the following calculation is very elaborate; you weren't expected to write it out in such detail:

$$
\begin{aligned}
& H\left(P_{\text {data }}(\mathbf{X}), P_{\text {model }}(\mathbf{X})\right)=\mathbb{E}_{P_{\text {data }}(\mathbf{X})}\left[-\log _{2} P_{\text {model }}(\mathbf{X})\right] \\
& \quad=\mathbb{E}_{P_{\text {data }}}(\mathbf{X})\left[-\sum_{i=1}^{k} \log _{2} P_{\text {model }}\left(X_{i}\right)\right] \\
& \quad=-\sum_{i=1}^{k} \mathbb{E}_{P_{\text {data }}(\mathbf{X})}\left[\log _{2} P_{\text {model }}\left(X_{i}\right)\right] \\
& \quad \stackrel{(*)}{=}-\sum_{i=1}^{k}\left(\sum_{\left(X_{1}, \ldots, X_{k}\right) \in \mathfrak{X}^{k}} P_{\text {data }}\left(X_{1}, \ldots, X_{k}\right) \times \log _{2} P_{\text {model }}\left(X_{i}\right)\right) \\
& \quad \stackrel{(\Delta)}{=}-\sum_{i=1}^{k}\left(\sum_{X_{i} \in \mathfrak{X}} P_{\text {data }}\left(X_{i}\right) \times \log _{2} P_{\text {model }}\left(X_{i}\right)\right) \\
& \quad=-\sum_{i=1}^{k} \mathbb{E}_{P_{\text {data }}\left(X_{i}\right)}\left[\log _{2} P_{\text {model }}\left(X_{i}\right)\right] \\
& \quad=\sum_{i=1}^{k} H\left(P_{\text {data }}\left(X_{i}\right), P_{\text {model }}\left(X_{i}\right)\right)
\end{aligned}
$$

Where, in the equality marked with " $(*)$ ", we explicitly write out the expectation over $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)$, and in the equality marked with" (\triangle) ", we marginalize over all X_{j} with $j \neq i$.
(ii) Argue that the right-hand side of Eq. 6 is minimized by setting $P_{\text {model }}^{*}\left(X_{i}\right)=$ $P_{\text {data }}\left(X_{i}\right)$ for all i. Thus, within the class of fully factorized models (Eq. 5), the best approximation $P_{\text {model }}^{*}(\mathbf{X})$ of an arbitrary distribution $P_{\text {data }}(\mathbf{X})$ is the product of the marginals, $P_{\text {model }}^{*}(\mathbf{X})=\prod_{i=1}^{k} P_{\text {data }}\left(X_{i}\right)$.
Hint: what is the cross entropy $H(P, P)$ of a distribution with itself, and why is it smaller or equal than any $H(P, Q)$ for all other distributions $Q \neq P$?

Solution: We first note that the cross entropy of a distribution with itself is just the normal entropy, $H(P, P)=H[P]$. Thus, choosing any other $P_{\text {model }}^{\prime}\left(X_{i}\right) \neq P_{\text {data }}\left(X_{i}\right)$ would increase the cross entropy by
$H\left(P_{\text {data }}\left(X_{i}\right), P_{\text {model }}^{\prime}\left(X_{i}\right)\right)-H\left[P_{\text {data }}\left(X_{i}\right)\right]=D_{\mathrm{KL}}\left(P_{\text {data }}\left(X_{i}\right) \| P_{\text {nodel }}^{\prime}\left(X_{i}\right)\right) \geq 0$.
(iii) Convince yourself that, for this optimal fully factorized model, the cross entropy (and thus the expected bit rate) is the sum of the marginal entropies of all symbols under the data distribution,

$$
\begin{equation*}
H\left(P_{\text {data }}(\mathbf{X}), P_{\text {model }}^{*}(\mathbf{X})\right)=\sum_{i=1}^{k} H_{P_{\text {data }}}\left(X_{i}\right) \quad \text { (if Eq. } 5 \text { holds) } . \tag{7}
\end{equation*}
$$

Solution: Inserting $P_{\text {model }}^{*}\left(X_{i}\right)=P_{\text {data }}\left(X_{i}\right)$ into the right-hand side of Eq. 6 and using $H(P, P)=H[P]$ leads to Eq. 7 .
(b) Markov Chains: as discussed in the lecture, a Markov chain models the creation of a sequence of symbols $X_{1}, X_{2}, \ldots, X_{k}$ as a memoryless stochastic process, i.e.,

$$
\begin{equation*}
P(\mathbf{X})=P\left(X_{1}\right) \prod_{i=2}^{k} P\left(X_{i} \mid X_{i-1}\right) \tag{8}
\end{equation*}
$$

where, from here on, we drop the subscript "model" for simplicity.
(i) Show that, although each symbol X_{i} is conditioned only on its immediately preceding symbol $X_{i-1}($ for $i>1$) and not on any earlier symbols, a Markov chain can still model correlations between any symbols, not just nearest neighbors. More specifically, show that there exists a model of the form of Eq. 8 where two symbols X_{i} and X_{j} are not statistically independent for at least some $i, j \in\{1, \ldots, k\}$ with $j \geq i+2$.
Hint: For example, you could consider the Markov chain over the alphabet $\mathfrak{X}=\{0,1\}$ with $P\left(X_{1}=0\right)=P\left(X_{1}=1\right)=\frac{1}{2}$ and

$$
P\left(X_{i} \mid X_{i-1}\right)= \begin{cases}0.99 & \text { if } X_{i}=X_{i-1} \tag{9}\\ 0.01 & \text { if } X_{i} \neq X_{i-1}\end{cases}
$$

Describe in words what a random sample $\mathbf{x} \sim P(\mathbf{X})$ from this model would typically look like. Then convince yourself (either by explicit calculation or by less formal and more intuitive arguments) that all marginal probabilities are $P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=\frac{1}{2} \forall i$ by symmetry but that, e.g., the conditional probability $P\left(X_{j}=1 \mid X_{i}=1\right)>\frac{1}{2}$ for at least some non-neighboring i, j (it turns out to be true for all i, j, but this is more difficult to show formally).

Solution: The probabilities in Eq. 9 were deliberately chosen this dramatic so as to point you to an interpretation of the model: the model describes sequences of bits, where one typically has long runs of identical bits before the bit flips. Therefore, while we have $P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=\frac{1}{2}$ for each individual bit X_{i} by symmetry, any two bits X_{i} and X_{j} are more likely to be equal than unequal, especially if $|i-j|$ is not too large. This is easy to show formally for symbols $j>i$ that are not too far away from each other:

$$
P\left(X_{j}=1 \mid X_{i}=1\right) \geq P\left(X_{i+1}=1, X_{i+2}=1, \ldots, X_{j}=1 \mid X_{i}=1\right)=0.99^{j-i}
$$

which is larger than $P\left(X_{j}=1\right)=\frac{1}{2}$ as long as $j-i \leq 68$. Therefore, X_{i} and X_{j} are not statistically independent in all these cases.
Note: The equation above only states a lower bound on $P\left(X_{j}=1 \mid X_{i}=1\right)$, but that's enough to prove that there exist some non-neighboring pairs of symbols that are not statistically independent. From our interpretation of Eq. 9, we'd expect that no pairs of symbols are statistically independent in this model; they only become close to being independent with growing distance $\delta:=j-i$ (i.e., $\lim _{\delta \rightarrow \infty} I_{P}\left(X_{i} ; X_{i+\delta}\right)=0$). This is in fact true: using the so-called transfer matrix method, which is out of scope for this problem set, one finds that $P\left(X_{j}=1 \mid X_{i}=1\right)=\frac{1}{2}\left(1+0.98^{|i-j|}\right)>\frac{1}{2} \forall i, j$.
(ii) Now show that, although a Markov chain can model symbols that are not statistically independent, any two symbols X_{i} and X_{l} with $l \geq i+2$ are conditionally independent given any X_{j} with $i<j<l$.
Hint: write out the joint probability of all symbols up to X_{l} as follows,

$$
\begin{equation*}
P(\mathbf{X})=\underbrace{\left(P\left(X_{1}\right) \prod_{\alpha=2}^{i} P\left(X_{\alpha} \mid X_{\alpha-1}\right)\right)}_{=P\left(X_{1}, \ldots, X_{i}\right)} \underbrace{\left(\prod_{\alpha=i+1}^{j} P\left(X_{\alpha} \mid X_{\alpha-1}\right)\right.}_{=P\left(X_{i+1}, \ldots, X_{j} \mid X_{i}\right)} \underbrace{\left(\prod_{\alpha=j+1}^{l} P\left(X_{\alpha} \mid X_{\alpha-1}\right)\right)}_{=P\left(X_{j+1}, \ldots, X_{l} \mid X_{j}\right)} . \tag{10}
\end{equation*}
$$

What do you get if you now marginalize both sides over all symbols except X_{i}, X_{j}, and X_{l} ? Compare the result to Eq. 4.

Solution: Marginalizing both sides of Eq. 10 over all symbols except X_{i}, X_{j}, and X_{l} results in

$$
P\left(X_{i}, X_{j}, X_{l}\right)=P\left(X_{i}\right) P\left(X_{j} \mid X_{i}\right) P\left(X_{l} \mid X_{j}\right)
$$

which is precisely of the form of Eq. 4.

(b)

Figure 1: (a) autoregressive model, see Problem 5.2 (c); (b) latent variable model, see Problem 5.2 (d)
(c) Autoregressive models: Figure 1 (a) illustrates an autoregressive model like the one you've used in Problem 3.2. The figure is a graphical representation of the following factorization of the joint probability distribution,

$$
\begin{equation*}
P(\mathbf{X})=\prod_{i=1}^{k} P\left(X_{i} \mid H_{i}\right) \quad \text { with } \quad H_{1}=\text { fixed } ; H_{i+1}=f\left(H_{i}, X_{i}\right) \tag{11}
\end{equation*}
$$

where f is some deterministic function (e.g., a neural network). Show that autoregressive models are more powerful than Markov chains in that they can model probability distributions where two symbols X_{i} and X_{l} are not conditionally independent given some third symbol X_{j} with $i<j<l$.

Hint: For example, you could consider a toy autoregressive model over the alphabet $\mathfrak{X}=\{0,1\}$ with $H_{1}=0$ and $H_{i+1}=f\left(H_{i}, X_{i}\right)=\left(H_{i}+X_{i}\right) \bmod 10$. Thus, the hidden state H_{i} counts how many " 1 " symbols have appeared before symbol X_{i} (modulo 10 so that the hidden states don't grow out of bounds). Now you could make the probability of " 1 " symbols depend on H_{i}, e.g., by setting $P\left(X_{i}=1 \mid H_{i}\right)=\frac{H_{i}+1}{10}$ and $P\left(X_{i}=0 \mid H_{i}\right)=1-\frac{H_{i}+1}{10}$. Then, consider the first three symbols X_{1}, X_{2}, and X_{3} (the statement is also true for other triples of symbols, but the calculations are more tedious). Show by explicit calculation that

$$
\begin{equation*}
P\left(X_{3}=1 \mid X_{1}=1, X_{2}=1\right) \neq P\left(X_{3}=1 \mid X_{2}=1\right) \tag{12}
\end{equation*}
$$

i.e., that even this simple toy model already violates the right-hand side of Eq. 3. The value of the left-hand side of Eq. 12 follows directly from unrolling the model but calculating the right-hand side takes a few more steps. Before you do these calculations, test your understanding by reasoning in words whether you expect the left-hand side of Eq. 12 to be smaller or larger than the right-hand side.

Solution: Since every "1"-bit increases the probability of subsequent "1"-bits, we expect the left-hand side of Eq. 12 to be larger than the right-hand side. Let's check this by explicit calculation.
To evaluate the left-hand side of Eq. 12, we can simply unroll the autoregressive model until the point where it models the symbol X_{3}. Since H_{i} counts how many " 1 " symbols have appeared before symbol X_{i} (modulo 10), we get $H_{3}=2$ and therefore $P\left(X_{3}=1 \mid X_{1}=1, X_{2}=1\right)=\frac{3}{10}=0.3$.

To evaluate the right-hand side of Eq. 12, we explicitly write out the conditional probability and then express both enumerator and denominator as a marginalization over X_{1},

$$
\begin{aligned}
P\left(X_{3}=1 \mid X_{2}=1\right) & =\frac{P\left(X_{2}=1, X_{3}=1\right)}{P\left(X_{2}=1\right)}=\frac{\sum_{x_{1} \in \mathfrak{X}} P\left(X_{1}=x_{1}, X_{2}=1, X_{3}=1\right)}{\sum_{x_{1} \in \mathfrak{X}} P\left(X_{1}=x_{1}, X_{2}=1\right)} \\
& =\frac{\frac{9}{10} \frac{1}{10} \frac{2}{10}+\frac{1}{10} \frac{2}{10} \frac{3}{10}}{\frac{9}{10} \frac{1}{10}+\frac{1}{10} \frac{2}{10}}=\frac{24}{110} \approx 0.218
\end{aligned}
$$

which is indeed smaller than the left-hand side, as we expected.
(d) Latent variable models: Figure 1 (b) illustrates a latent variable model. You'll learn how to use latent variable models for effective data compression with the so-called bits-back trick in Lecture 7. But let's first prove here that latent variable models can in fact capture correlations between symbols.

The illustration in Figure 1 (b) is a pictorial representation of the following factorization of a joint probability distribution over symbols $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)$ and a (usually multidimensional) so-called latent variable Z,

$$
\begin{equation*}
P(\mathbf{X}, Z)=P(Z) \prod_{i=1}^{k} P\left(X_{i} \mid Z\right) \tag{13}
\end{equation*}
$$

Here $P(Z)$ is called the "prior distribution" and $P\left(X_{i} \mid Z\right)$ is called the "likelihood". At a first glance, the model architecture in Eq. 13 might look like it couldn't possibly capture any correlations between different symbols X_{i} because the part of Eq. 13 that describes symbols is fully factorized (similar to the model in Eq. 5). However, this impression is deceptive because the symbols X_{i} are only conditionally independent given the latent Z. However, Z is not part of the message. The probabilistic model of the message is the marginal distribution of \mathbf{X},

$$
P(\mathbf{X})= \begin{cases}\sum_{Z} P(\mathbf{X}, Z) & \text { for discrete } Z \tag{14}\\ \int P(\mathbf{X}, Z) d Z & \text { for continuous } Z\end{cases}
$$

Show that the marginal distribution in Eq. 14 can indeed describe correlations between symbols, i.e., a distribution of this form can model data sources where any two symbols X_{i} and X_{l} are not statistically independent, and are also not conditionally independent given any different third symbol X_{j}.
Hint: You could consider, e.g., a toy model over the alphabet $\mathfrak{X}=\{0,1\}$ with $k=3$, boolean $Z \in\{0,1\}$, and with a likelihood $P\left(X_{i} \mid Z\right)$ that is the same for all i. Come up with some explicit probabilities for $P(Z=z)$ and $P\left(X_{i}=x_{i} \mid Z=z\right)$ for all $z, x_{i} \in\{0,1\}$. Then show first that $P\left(X_{1}=x_{1}, X_{3}=x_{3}\right) \neq P\left(X_{1}=x_{1}\right) P\left(X_{3}=x_{3}\right)$ and finally that $P\left(X_{3}=x_{3} \mid X_{1}=x_{1}, X_{2}=x_{2}\right) \neq P\left(X_{3}=x_{3} \mid X_{2}=x_{2}\right)$ in your model for some $x_{1}, x_{2}, x_{3} \in\{0,1\}$ of your choice. Try to explain your findings in words
too: why does knowing the value of, e.g., X_{1} influence the probability distribution over X_{3} ?

Solution: Let's use a uniform prior $P(Z)$ for simplicity and a likelihood $P\left(X_{i} \mid Z\right)$ that favors X_{i} to be equal to the latent variable Z. Thus, let $\alpha>\frac{1}{2}$ and

$$
P(Z=z)=\frac{1}{2} \forall z \in\{0,1\} \quad \text { and } \quad P\left(X_{i}=x_{i} \mid Z=z\right)= \begin{cases}\alpha & \text { if } x_{i}=z \\ 1-\alpha & \text { if } x_{i} \neq z\end{cases}
$$

It is generally a good idea to reason informally about extreme cases before doing formal calculations. Here, the extreme case is where α is almost one. Since both the prior probability and the likelihood remain unchanged if we simultaneously flip the latent bit Z and all symbols X_{i}, each individual symbol X_{i} is either " 0 " or " 1 " with equal probability, $P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=\frac{1}{2}$. However, for $\alpha \approx 1$, we expect that most symbols X_{i} are equal to Z and thus, even if we don't know Z, we can predict that most symbols are probably equal to each other. Or, put in different words, if we know, e.g., that $X_{1}=1$, then the most probable explanation for this is that $Z=1$, which would then also make it probable that $X_{3}=1$. Conversely, if we know that $X_{1}=0$, then the most probable explanation for this is that $Z=0$, which would then also make it probable that $X_{3}=0$. Thus, $P\left(X_{3} \mid X_{1}\right)$ depends on X_{1} and therefore X_{1} and X_{3} are not statistically independent. If we now also know the value of X_{2} then we have even more evidence to reason about Z and, consequently, the probability of X_{3} changes again.
More formally, we have, e.g.,

$$
\begin{aligned}
P\left(X_{i}=1\right) & =\sum_{z \in\{0,1\}} P\left(Z=z, X_{i}=1\right)=\sum_{z \in\{0,1\}} P(Z=z) P\left(X_{i}=1 \mid Z=z\right) \\
& =\frac{1}{2} \times \alpha+\frac{1}{2} \times(1-\alpha)=\frac{1}{2}
\end{aligned}
$$

and therefore

$$
P\left(X_{1}=1\right) P\left(X_{3}=1\right)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}
$$

whereas, for $i \neq j$ we have, according to our model in Eqs. 13-14,

$$
\begin{aligned}
P\left(X_{i}=1, X_{j}=1\right) & =\sum_{z \in\{0,1\}} P\left(Z=z, X_{i}=1, X_{j}=1\right) \\
& =\sum_{z \in\{0,1\}} P(Z=z) P\left(X_{i}=1 \mid Z=z\right) P\left(X_{j}=1 \mid Z=z\right) \\
& =\frac{1}{2}\left[(1-\alpha)^{2}+\alpha^{2}\right]=\frac{1}{2}-\alpha+\alpha^{2}=\frac{1}{4}+\left(\alpha-\frac{1}{2}\right)^{2} \\
& >\frac{1}{4} \quad \forall \alpha \neq \frac{1}{2}
\end{aligned}
$$

which proves that X_{i} and X_{j} are not statistically independent.
To prove that X_{1} and X_{3} are also not conditionally independent given X_{2} we show that they don't form a Markov chain, i.e., we use Eq. 3 and show that $P\left(X_{3}=1 \mid X_{1}=1, X_{2}=1\right) \neq P\left(X_{3}=1 \mid X_{2}=1\right)$. For simplicity, we chose a concrete value of $\alpha=0.9$ here. We obtain the right-hand side by combining the above results,

$$
P\left(X_{3}=1 \mid X_{2}=1\right)=\frac{P\left(X_{2}=1, X_{3}=1\right)}{P\left(X_{2}=1\right)}=\frac{\frac{1}{2}\left[(1-\alpha)^{2}+\alpha^{2}\right]}{\frac{1}{2}}=0.82
$$

whereas, for the left-hand side,

$$
\begin{aligned}
P\left(X_{3}=1 \mid X_{1}=1, X_{2}=1\right) & =\frac{P\left(X_{1}=1, X_{2}=1, X_{3}=1\right)}{P\left(X_{1}=1, X_{2}=1\right)} \stackrel{(*)}{=} \frac{\frac{1}{2}\left[(1-\alpha)^{3}+\alpha^{3}\right]}{\frac{1}{2}\left[(1-\alpha)^{2}+\alpha^{2}\right]} \\
& =\frac{0.73}{0.82} \approx 0.89>P\left(X_{3}=1 \mid X_{2}=1\right)
\end{aligned}
$$

where the equality marked with "(*)" expresses both the enumerator and the denominator again as a marginalization over $Z \in\{0,1\}$.

