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Problem 5.1: Conditional Independence

In last week’s lecture, we learned that every probability dis-
tribution P satisfies the so-called chain rule of probability
theory. For example, for any three random variables X, Y ,
and Z, we can always factorize their joint probability distri-
bution as follows (see illustration on the right),

P (X, Y, Z) = P (X)P (Y |X)P (Z |X, Y ). (1)

We then introduced the concept of conditional (statistical) independence between two
random variables X and Z given a third random variable Y , which is defined analogously
to the ordinary (i.e., unconditional) statistical independence as follows,

X and Z are conditionally independent given Y :⇔ P (X,Z |Y ) = P (X |Y )P (Z |Y ).
(2)

(a) Show that conditional independence between X and Z given Y means that, once
you know the value of Y , learning about the value of X would not provide any
additional information about Z, i.e.,

X and Z are cond. independ. given Y ⇔ P (Z |X, Y ) = P (Z |Y ). (3)

Solution: Eq. 3 follows by solving Eq. 2 for P (Z |Y ):

P (X,Z |Y ) = P (X |Y )P (Z |Y )

⇔P (Z |Y ) =
P (X,Z |Y )

P (X |Y )
=

P (X, Y, Z)

P (Y )

P (Y )

P (X, Y )
=

P (X, Y, Z)

P (X, Y )
= P (Z |X, Y ).

■

Remark: Eq. 3 implies that, if and only if X and Z are
conditionally independent given Y , then the chain rule from
Eq. 1 simplifies as follows (see illustration on the right),

X and Z are cond. indep. given Y ⇔ P (X, Y, Z) = P (X)P (Y |X)P (Z|Y ). (4)
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We refer to the property expressed by Eq. 4 also by saying that X, Y , and Z form
a Markov chain X → Y → Z. A Markov chain can be interpreted as a memoryless
stochastic process: if you want to draw a random sample from a Markov chain, then
you can proceed as follows: first, draw a random sample x ∼ P (X), then draw y ∼
P (Y |X=x), and finally draw z ∼ P (Z |Y =y). Notice that, once you’ve drawn y, you
no longer need to keep x in memory because you won’t need it for drawing z.
Markov chains play an important role in information theory since communication

pipelines can typically be modeled as chains of memoryless stages, where each stage
transforms the communicated data into some new representation. We’ll meet Markov
chains again when we discuss channel coding and lossy compression, and you’ll prove an
important bound on how information propagates along a Markov chain—the so-called
data processing inequality—on Problem Set 10.

Comparison to ordinary independence: we now show that conditional independence
is neither a stronger nor a weaker property than ordinary statistical independence.

(b) Show that two random variables X and Z can be statistically independent even if
they are not conditionally independent given some third random variable Y .

Hint: Consider our Simplified Game of Monopoly. You already showed in Prob-
lem 4.1 (b) that Xred and Xblue are statistically independent. Now show that Xred

and Xblue are, however, not conditionally independent given Xsum.

Solution: By definition, conditional independence holds if and only if the two
probability distributions on the left and right-hand sides of Eq. 2 are equal. Two
probability distributions are equal if they assign the same probabilities to all pos-
sible inputs. Thus, in order to show that Xred and Xblue are not conditionally
independent given Xsum, we only have to find a single triple of values xred, xblue,
and xsum for which

P (Xred=xred, Xblue=xblue |Xsum=xsum)

̸= P (Xred=xred |Xsum=xsum)P (Xblue=xblue |Xsum=xsum).

You can easily find many examples for xred, xblue, and xsum for which this is the
case. For example, we have

P (Xred=1, Xblue=1 |Xsum=3) = 0

but, according to our example in the lecture notes for Lecture 4,

P (Xred=1 |Xsum=3)P (Xblue=1 |Xsum=3) =
1

2
× 1

2
̸= 0.

Intuitively, this makes sense: the red and the blue die are thrown independently
of each other, but if we’re told their sum then the equation Xred + Xblue = Xsum

introduces a constraint that ties Xred and Xblue together. ■
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(c) Show that two random variables X and Z can be conditionally independent given
some third random variable Y even if X and Z are not statistically independent.

Hint: Any (nontrivial) Markov process X → Y → Z will do: conditioning on Y
“cuts” the dependency between X and Z. For example, consider a sequence of
three coin tosses and let X, Y , and Z be the number of times that the coin
comes up “heads” in the first, the first two, and all three tosses, respectively.
Find an expression for P (Z |X, Y ) without being overly formal (think about the
experimental setup and the interpretation of conditional probability rather than
its formal mathematical definition). Then convince yourself that X and Z are
conditionally independent given Y by Eq. 3. Show by providing a counter example
that, without conditioning on Y , then X and Z are not statistically independent.

Solution: Assuming a fair coin for simplicity, we have

P (Z |X, Y ) =

{
1
2

if Z ∈ {Y, Y + 1};
0 otherwise.

Here, the fact that the right-hand side does not depend on X means that condi-
tioning on X is unnecessary, i.e., P (Z |X, Y ) = P (Z |Y ) and thus X and Z are
conditionally independent given Y by Eq. 3. However, without conditioning on Y ,
we have, e.g.,

P (X=1, Z=0) = 0 but P (X=1)P (Z=0) =
1

2
× 1

8
̸= 0.

Thus, X and Z are not statistically independent. ■

Problem 5.2: Expressiveness of Probabilistic Models

In the lecture, we introduced various model architectures to efficiently approximate
complicated probability distributions. Let us now analyze how expressive each of these
architectures is. In particular, we analyze whether each of the proposed architecture can
model correlations between symbols in a message, i.e., the fact that, in messages that
appear in the real world, symbols are typically not statistically independent. All models
below describe a message X = (X1, X2, . . . , Xk) where each symbol Xi, i ∈ {1, 2, . . . , k}
is modeled as a random variable with values from some discrete alphabet X.
The four parts (a)-(d) of this problem can be solved independently. So

don’t give up if you have troubles solving one of the parts.

(a) Fully factorized models: before we look at more complicated model architec-
tures below, let’s consider the most trivial model architecture, which assumes that
all symbols Xi, i ∈ {1, 2, . . . , k} are statistically independent. Such a model is
often called “fully factorized” because the joint probability distribution P (X) of
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the message X can be written as a product of the marginal distributions:

Pmodel(X) =
k∏

i=1

Pmodel(Xi). (5)

Here, we reinstated the subscript “model” because we want to search for the best
model, P ∗

model(X), that can be written in the form of Eq. 5 and that best approxi-
mates some data distribution Pdata(X), which is typically not fully factorized.

(i) Consider the cross entropy H
(
Pdata(X), Pmodel(X)

)
. Convince yourself that,

for a model of the form of Eq. 5 (warning: but not for more general models),

H
(
Pdata(X), Pmodel(X)

)
=

k∑
i=1

H
(
Pdata(Xi), Pmodel(Xi)

)
(if Eq. 5 holds) (6)

where Pdata(Xi) is the marginal distribution of Xi under Pdata (i.e., the distri-
bution that you obtain if you marginalize Pdata(X) over all Xj with j ̸= i).

Solution: We simply write out the cross entropy on the left-hand side of
Eq. 6, use linearity of the expectation, and then marginalize each term over all
Xj with j ̸= i. For your reference, the following calculation is very elaborate;
you weren’t expected to write it out in such detail:

H
(
Pdata(X), Pmodel(X)

)
= EPdata(X)

[
− log2 Pmodel(X)

]
= EPdata(X)

[
−

k∑
i=1

log2 Pmodel(Xi)

]

= −
k∑

i=1

EPdata(X)

[
log2 Pmodel(Xi)

]
(∗)
= −

k∑
i=1

( ∑
(X1,...,Xk)∈Xk

Pdata(X1, . . . , Xk)× log2 Pmodel(Xi)

)

(△)
= −

k∑
i=1

( ∑
Xi∈X

Pdata(Xi)× log2 Pmodel(Xi)

)

= −
k∑

i=1

EPdata(Xi)

[
log2 Pmodel(Xi)

]
=

k∑
i=1

H
(
Pdata(Xi), Pmodel(Xi)

)
Where, in the equality marked with “(∗)”, we explicitly write out the expec-
tation over X = (X1, . . . , Xk), and in the equality marked with “(△)”, we
marginalize over all Xj with j ̸= i. ■
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(ii) Argue that the right-hand side of Eq. 6 is minimized by setting P ∗
model(Xi) =

Pdata(Xi) for all i. Thus, within the class of fully factorized models (Eq. 5),
the best approximation P ∗

model(X) of an arbitrary distribution Pdata(X) is the

product of the marginals, P ∗
model(X) =

∏k
i=1 Pdata(Xi).

Hint: what is the cross entropy H(P, P ) of a distribution with itself, and why
is it smaller or equal than any H(P,Q) for all other distributions Q ̸= P?

Solution: We first note that the cross entropy of a distribution with it-
self is just the normal entropy, H(P, P ) = H[P ]. Thus, choosing any other
P ′
model(Xi) ̸= Pdata(Xi) would increase the cross entropy by

H
(
Pdata(Xi), P

′
model(Xi)

)
−H

[
Pdata(Xi)

]
= DKL

(
Pdata(Xi) ||P ′

nodel(Xi)
)
≥ 0.

■

(iii) Convince yourself that, for this optimal fully factorized model, the cross en-
tropy (and thus the expected bit rate) is the sum of the marginal entropies
of all symbols under the data distribution,

H
(
Pdata(X), P ∗

model(X)
)
=

k∑
i=1

HPdata
(Xi) (if Eq. 5 holds). (7)

Solution: Inserting P ∗
model(Xi) = Pdata(Xi) into the right-hand side of Eq. 6

and using H(P, P ) = H[P ] leads to Eq. 7. ■

(b) Markov Chains: as discussed in the lecture, a Markov chain models the creation
of a sequence of symbols X1, X2, . . . , Xk as a memoryless stochastic process, i.e.,

P (X) = P (X1)
k∏

i=2

P (Xi |Xi−1) (8)

where, from here on, we drop the subscript “model” for simplicity.

(i) Show that, although each symbol Xi is conditioned only on its immediately
preceding symbol Xi−1 (for i > 1) and not on any earlier symbols, a Markov
chain can still model correlations between any symbols, not just nearest neigh-
bors. More specifically, show that there exists a model of the form of Eq. 8
where two symbols Xi and Xj are not statistically independent for at least
some i, j ∈ {1, . . . , k} with j ≥ i+ 2.

Hint: For example, you could consider the Markov chain over the alphabet
X = {0, 1} with P (X1=0) = P (X1=1) = 1

2
and

P (Xi |Xi−1) =

{
0.99 if Xi = Xi−1;

0.01 if Xi ̸= Xi−1.
(9)
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Describe in words what a random sample x ∼ P (X) from this model would
typically look like. Then convince yourself (either by explicit calculation or
by less formal and more intuitive arguments) that all marginal probabilities
are P (Xi=0) = P (Xi=1) = 1

2
∀i by symmetry but that, e.g., the conditional

probability P (Xj=1 |Xi=1) > 1
2
for at least some non-neighboring i, j (it

turns out to be true for all i, j, but this is more difficult to show formally).

Solution: The probabilities in Eq. 9 were deliberately chosen this dramatic
so as to point you to an interpretation of the model: the model describes
sequences of bits, where one typically has long runs of identical bits before
the bit flips. Therefore, while we have P (Xi =0) = P (Xi =1) = 1

2
for each

individual bit Xi by symmetry, any two bits Xi and Xj are more likely to be
equal than unequal, especially if |i− j| is not too large. This is easy to show
formally for symbols j > i that are not too far away from each other:

P (Xj=1 |Xi=1) ≥ P (Xi+1=1, Xi+2=1, . . . , Xj=1 |Xi=1) = 0.99j−i

which is larger than P (Xj = 1) = 1
2
as long as j − i ≤ 68. Therefore, Xi

and Xj are not statistically independent in all these cases.

Note: The equation above only states a lower bound on P (Xj = 1 |Xi = 1),
but that’s enough to prove that there exist some non-neighboring pairs of
symbols that are not statistically independent. From our interpretation of
Eq. 9, we’d expect that no pairs of symbols are statistically independent
in this model; they only become close to being independent with growing
distance δ := j − i (i.e., limδ→∞ IP (Xi;Xi+δ) = 0). This is in fact true: using
the so-called transfer matrix method, which is out of scope for this problem
set, one finds that P (Xj=1 |Xi=1) = 1

2

(
1 + 0.98|i−j|) > 1

2
∀i, j.) ■

(ii) Now show that, although a Markov chain can model symbols that are not
statistically independent, any two symbols Xi and Xl with l ≥ i + 2 are
conditionally independent given any Xj with i < j < l.

Hint: write out the joint probability of all symbols up to Xl as follows,

P (X) =

(
P (X1)

i∏
α=2

P (Xα|Xα−1)

)
︸ ︷︷ ︸

=P (X1,...,Xi)

(
j∏

α=i+1

P (Xα|Xα−1)

)
︸ ︷︷ ︸

=P (Xi+1,...,Xj |Xi)

(
l∏

α=j+1

P (Xα|Xα−1)

)
︸ ︷︷ ︸

=P (Xj+1,...,Xl|Xj)

.

(10)

What do you get if you now marginalize both sides over all symbols except
Xi, Xj, and Xl? Compare the result to Eq. 4.

Solution: Marginalizing both sides of Eq. 10 over all symbols except Xi,
Xj, and Xl results in

P (Xi, Xj, Xl) = P (Xi)P (Xj |Xi)P (Xl |Xj)

which is precisely of the form of Eq. 4. ■
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Figure 1: (a) autoregressive model, see Problem 5.2 (c); (b) latent variable model, see
Problem 5.2 (d)

(c) Autoregressive models: Figure 1 (a) illustrates an autoregressive model like
the one you’ve used in Problem 3.2. The figure is a graphical representation of the
following factorization of the joint probability distribution,

P (X) =
k∏

i=1

P (Xi |Hi) with H1 = fixed; Hi+1 = f(Hi, Xi) (11)

where f is some deterministic function (e.g., a neural network). Show that au-
toregressive models are more powerful than Markov chains in that they can model
probability distributions where two symbols Xi and Xl are not conditionally inde-
pendent given some third symbol Xj with i < j < l.

Hint: For example, you could consider a toy autoregressive model over the al-
phabet X = {0, 1} with H1 = 0 and Hi+1 = f(Hi, Xi) = (Hi + Xi) mod 10.
Thus, the hidden state Hi counts how many “1” symbols have appeared before
symbol Xi (modulo 10 so that the hidden states don’t grow out of bounds). Now
you could make the probability of “1” symbols depend on Hi, e.g., by setting
P (Xi=1 |Hi) =

Hi+1
10

and P (Xi=0 |Hi) = 1− Hi+1
10

. Then, consider the first three
symbols X1, X2, and X3 (the statement is also true for other triples of symbols,
but the calculations are more tedious). Show by explicit calculation that

P (X3=1 |X1=1, X2=1) ̸= P (X3=1 |X2=1), (12)

i.e., that even this simple toy model already violates the right-hand side of Eq. 3.
The value of the left-hand side of Eq. 12 follows directly from unrolling the model
but calculating the right-hand side takes a few more steps. Before you do these
calculations, test your understanding by reasoning in words whether you expect
the left-hand side of Eq. 12 to be smaller or larger than the right-hand side.

Solution: Since every “1”-bit increases the probability of subsequent “1”-bits,
we expect the left-hand side of Eq. 12 to be larger than the right-hand side. Let’s
check this by explicit calculation.

To evaluate the left-hand side of Eq. 12, we can simply unroll the autoregressive
model until the point where it models the symbol X3. Since Hi counts how many
“1” symbols have appeared before symbol Xi (modulo 10), we get H3 = 2 and
therefore P (X3=1 |X1=1, X2=1) = 3

10
= 0.3.
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To evaluate the right-hand side of Eq. 12, we explicitly write out the conditional
probability and then express both enumerator and denominator as a marginaliza-
tion over X1,

P (X3=1 |X2=1) =
P (X2=1, X3=1)

P (X2=1)
=

∑
x1∈X P (X1=x1, X2=1, X3=1)∑

x1∈X P (X1=x1, X2=1)

=
9
10

1
10

2
10

+ 1
10

2
10

3
10

9
10

1
10

+ 1
10

2
10

=
24

110
≈ 0.218

which is indeed smaller than the left-hand side, as we expected. ■

(d) Latent variable models: Figure 1 (b) illustrates a latent variable model. You’ll
learn how to use latent variable models for effective data compression with the
so-called bits-back trick in Lecture 7. But let’s first prove here that latent variable
models can in fact capture correlations between symbols.

The illustration in Figure 1 (b) is a pictorial representation of the following fac-
torization of a joint probability distribution over symbols X = (X1, . . . , Xk) and a
(usually multidimensional) so-called latent variable Z,

P (X, Z) = P (Z)
k∏

i=1

P (Xi |Z). (13)

Here P (Z) is called the “prior distribution” and P (Xi |Z) is called the “likelihood”.
At a first glance, the model architecture in Eq. 13 might look like it couldn’t
possibly capture any correlations between different symbols Xi because the part
of Eq. 13 that describes symbols is fully factorized (similar to the model in Eq. 5).
However, this impression is deceptive because the symbolsXi are only conditionally
independent given the latent Z. However, Z is not part of the message. The
probabilistic model of the message is the marginal distribution of X,

P (X) =


∑

Z P (X, Z) for discrete Z;∫
P (X, Z) dZ for continuous Z.

(14)

Show that the marginal distribution in Eq. 14 can indeed describe correlations
between symbols, i.e., a distribution of this form can model data sources where
any two symbols Xi and Xl are not statistically independent, and are also not
conditionally independent given any different third symbol Xj.

Hint: You could consider, e.g., a toy model over the alphabet X = {0, 1} with
k = 3, boolean Z ∈ {0, 1}, and with a likelihood P (Xi |Z) that is the same for all i.
Come up with some explicit probabilities for P (Z=z) and P (Xi=xi |Z=z) for all
z, xi ∈ {0, 1}. Then show first that P (X1=x1, X3=x3) ̸= P (X1=x1)P (X3=x3)
and finally that P (X3=x3 |X1=x1, X2=x2) ̸= P (X3=x3 |X2=x2) in your model
for some x1, x2, x3 ∈ {0, 1} of your choice. Try to explain your findings in words
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too: why does knowing the value of, e.g., X1 influence the probability distribution
over X3?

Solution: Let’s use a uniform prior P (Z) for simplicity and a likelihood P (Xi|Z)
that favors Xi to be equal to the latent variable Z. Thus, let α > 1

2
and

P (Z=z) =
1

2
∀z ∈ {0, 1} and P (Xi=xi |Z=z) =

{
α if xi = z;

1− α if xi ̸= z.

It is generally a good idea to reason informally about extreme cases before doing
formal calculations. Here, the extreme case is where α is almost one. Since both
the prior probability and the likelihood remain unchanged if we simultaneously flip
the latent bit Z and all symbols Xi, each individual symbol Xi is either “0” or “1”
with equal probability, P (Xi=0) = P (Xi=1) = 1

2
. However, for α ≈ 1, we expect

that most symbols Xi are equal to Z and thus, even if we don’t know Z, we can
predict that most symbols are probably equal to each other. Or, put in different
words, if we know, e.g., that X1 = 1, then the most probable explanation for this
is that Z = 1, which would then also make it probable that X3 = 1. Conversely, if
we know that X1 = 0, then the most probable explanation for this is that Z = 0,
which would then also make it probable that X3 = 0. Thus, P (X3 |X1) depends
on X1 and therefore X1 and X3 are not statistically independent. If we now also
know the value of X2 then we have even more evidence to reason about Z and,
consequently, the probability of X3 changes again.

More formally, we have, e.g.,

P (Xi=1) =
∑

z∈{0,1}

P (Z=z,Xi=1) =
∑

z∈{0,1}

P (Z=z)P (Xi=1 |Z=z)

=
1

2
× α +

1

2
× (1− α) =

1

2

and therefore

P (X1=1)P (X3=1) =
1

2
× 1

2
=

1

4

whereas, for i ̸= j we have, according to our model in Eqs. 13-14,

P (Xi=1, Xj=1) =
∑

z∈{0,1}

P (Z=z,Xi=1, Xj=1)

=
∑

z∈{0,1}

P (Z=z)P (Xi=1 |Z=z)P (Xj=1 |Z=z)

=
1

2

[
(1− α)2 + α2

]
=

1

2
− α + α2 =

1

4
+

(
α− 1

2

)2

>
1

4
∀α ̸= 1

2
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which proves that Xi and Xj are not statistically independent.

To prove that X1 and X3 are also not conditionally independent given X2 we
show that they don’t form a Markov chain, i.e., we use Eq. 3 and show that
P (X3=1 |X1=1, X2=1) ̸= P (X3=1 |X2=1). For simplicity, we chose a concrete
value of α = 0.9 here. We obtain the right-hand side by combining the above
results,

P (X3=1 |X2=1) =
P (X2=1, X3=1)

P (X2=1)
=

1
2

[
(1− α)2 + α2

]
1
2

= 0.82

whereas, for the left-hand side,

P (X3=1 |X1=1, X2=1) =
P (X1=1, X2=1, X3=1)

P (X1=1, X2=1)

(∗)
=

1
2

[
(1− α)3 + α3

]
1
2

[
(1− α)2 + α2

]
=

0.73

0.82
≈ 0.89 > P (X3=1 |X2=1)

where the equality marked with “(∗)” expresses both the enumerator and the
denominator again as a marginalization over Z ∈ {0, 1}. ■
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