
Problem Set 6 published: 24 May 2023
discussion: 7 June 2023

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tübingen

Course materials available at https://robamler.github.io/teaching/compress23/

Note: This problem set focuses entirely on the Asymmetric Numeral Systems (ANS) al-
gorithm as there seemed to be quite a bit of confusion about this algorithm in the lecture.
I decided to defer the promised exercise that uses range coding with our autoregressive
machine-learning model of English text to a later problem set.

Problem 6.1: Positional Numeral Systems

In the lecture, we introduced the Asymmetric Numeral Systems entropy coder as a
generalization of positional numeral systems. Listing 1 on the next page shows our im-
plementation of a class UniformCoder, which is an optimal entropy coder for a sequence
of independent and uniformly distributed symbols, using a positional numeral system
with a position-dependent base. The listing also contains a simple usage example.

(a) Correctness: prove that UniformCoder is indeed a correct entropy coder, i.e.,
that decoding (i.e., pop) is the inverse of encoding (i.e., push):

(i) convince yourself that calling coder.push(symbol, base) and then calling
coder.pop(base) returns symbol and restores the original state of coder,
regardless of its original state (assuming that all method arguments are valid,
i.e., base and symbol are integers with 0 ≤ symbol < base);

(ii) convince yourself that setting symbol = coder.pop(base) with any positive
integer base and then calling coder.push(symbol, base) restores the orig-
inal state of coder, regardless of its original state (even if the coder was
originally empty).

(b) Compression performance: assume you use the UniformCoder to encode a
sequence of symbols x1, x2, . . . , xk with respective bases (i.e., alphabet sizes)
|X1|, |X2|, . . . , |Xk|. Assuming the alphabet sizes are fixed, which sequence of
symbols leads to the largest possible value of coder.compressed after encod-
ing? What is this largest possible value and how long is its binary representation?
Compare to the information content of the message assuming the symbols are sta-
tistically independent, and each one is uniformly distributed over the respective
alphabet Xi = {0, 1, . . . , |Xi| − 1} for each symbol xi.

1

https://robamler.github.io/teaching/compress23/


1 class UniformCoder:

2 def __init__(self, compressed=0):

3 self.compressed = compressed

4

5 def push(self, symbol, base): # Encodes a symbol ∈ {0, . . . , base− 1}.
6 self.compressed = self.compressed * base + symbol

7

8 def pop(self, base): # Decodes a symbol ∈ {0, . . . , base− 1}.
9 symbol = self.compressed % base

10 self.compressed //= base # (" //" denotes integer division.)

11 return symbol

12

13 # Usage example:

14 coder = UniformCoder()

15

16 coder.push(6, base=10)

17 coder.push(13, base=16)

18 coder.push(7, base=8)

19 print(bin(coder.compressed)) # Prints: "0b1101101111"

20

21 print(coder.pop(base=8)) # Prints: "7"

22 print(coder.pop(base=16)) # Prints: "13"

23 print(coder.pop(base=10)) # Prints: "6"

Listing 1: A “stack”-like entropy coder that is optimal for uniformly distributed symbols.

2



Problem 6.2: Naive Asymmetric Numeral Systems

Listing 2 shows the SlowAnsCoder from the lecture, which is a naive version of the
Asymmetric Numeral Systems (ANS) algorithm (we will improve it in Problem 6.3).

(a) Correctness: similar to Problem 6.1 (a), prove that SlowAnsCoder is a correct
entropy coder, i.e., that decoding (i.e., pop) is the inverse of encoding (i.e., push):

(i) convince yourself that calling coder.push(symbol, m) followed by calling
coder.pop(m) returns symbol and restores the original state of coder, re-
gardless of its original state (assuming that all method arguments are valid,
i.e., m is a list of nonnegative integers that sum to 2precision and 0 ≤ symbol <
len(m); also, m[symbol] ̸= 0; why is the last condition necessary?);

(ii) convince yourself that setting symbol = coder.pop(m) (where m is again
a list of nonnegative integers that sum to 2precision), followed by calling
coder.push(symbol, m) restores the original state of coder, regardless of
its original state (even if the coder was originally empty).

You may build your arguments on the fact that coder.uniform coder is a correct
entropy coder, which you showed in Problem 6.1 (a).

(b) Compression performance: in Problem 6.1 (b), you showed that encoding
(i.e., pushing) a symbol with a UniformCoder and some given base contributes
log2(base) bits to the amortized bit rate. Since pop inverts push, it therefore
reduces the amortized bit rate by the same amount. Using these results, by how
much does calling the method push on a SlowAnsCoder increase the amortized bit
rate? Compare to the information content of the symbol under the approximate
probability distribution Q(Xi=xi) =

mi(xi)
n

where mi(xi) is m[symbol] in python.

Figure 1: Stream coding with the naive SlowAnsCoder from Listing 2.

3



1 class SlowAnsCoder:

2 def __init__(self, precision, compressed=0):

3 self.n = 2**precision # (" **" denotes exponentiation.)

4 self.uniform_coder = UniformCoder(compressed) # See Listing 1.

5

6 def push(self, symbol, m): # Encodes one symbol.

7 z = self.uniform_coder.pop(base=m[symbol]) + sum(m[0:symbol])

8 self.uniform_coder.push(z, base=self.n)

9

10 def pop(self, m): # Decodes one symbol.

11 z = self.uniform_coder.pop(base=self.n)

12 # Find the unique symbol that satisfies z ∈ Zi(symbol)
13 # (using linear search just to simplify exposition):

14 for symbol, m_symbol in enumerate(m):

15 if z >= m_symbol:

16 z -= m_symbol

17 else:

18 break

19 self.uniform_coder.push(z, base=m_symbol)

20 return symbol

21

22 def get_compressed(self):

23 return self.uniform_coder.compressed

24

25 # Usage example:

26 precision = 4 # (for demonstration purpose only)

27 m = [7, 6, 3] # (adds up to 16 = 2precision, as required)

28 coder = SlowAnsCoder(precision)

29

30 coder.push(0, m)

31 coder.push(2, m)

32 coder.push(1, m)

33 print(bin(coder.get_compressed())) # Prints: "0b101000"

34

35 print(coder.pop(m)) # Prints: 1

36 print(coder.pop(m)) # Prints: 2

37 print(coder.pop(m)) # Prints: 0

Listing 2: Our naive (slow) implementation of Asymmetric Numeral Systems (ANS)
from the lecture.

4



Figure 2: Representation of compressed data in streaming ANS with precision = 8.

Figure 3: Stream coding with a StreamingAnsCoder (Listing 3) with precision = 4.

Problem 6.3: Streaming Asymmetric Numeral Systems

The SlowAnsCoder that we implemented in the lecture and discussed in Problem 6.2 is
a correct entropy coder with a very close to optimal bit rate. But it has a problem: it
is slow. More precisely, the runtime for encoding a single symbol grows linearly with
the information content that has already been encoded onto the SlowAnsCoder before.
Therefore, the runtime for encoding a sequence of k symbols scales quadratically in k,
which makes this naive algorithm impractical for most common use cases. Let’s fix this.

(a) Let’s first understand exactly why the SlowAnsCoder from Listing 2 is slow. Fig-
ure 1 on page 3 illustrates how compressed data accumulates as we encode a
sequence of 10 symbols x1, x2, . . . , x10 with a SlowAnsCoder. Different to, e.g.,
arithmetic coding or range coding, each new symbol that we encode conceptually
pushes any previously encoded data to the left (i.e., towards more significant bits
of coder.uniform coder.compressed). This operation becomes increasingly ex-
pensive as the amount of previously encoded data grows. Identify the lines of code
in Listing 2 (and, more precisely, inside method calls that jump to Listing 1) that
implement this increasingly expensive operation.

In order to speed up ANS and to make its runtime complexity linear in the length of the
message, one uses the following trick (called “streaming ANS”): instead of representing
the entire compressed data as a single (giant) integer, one splits the compressed data into
a bulk part that holds most of the data in a dynamically sized array (aka “vector”) and
a head part with a fixed (and small) capacity. Figure 2 illustrates the simplest variant
of this approach where each item of the vector bulk holds precision bits (referred to as
“one word” of compressed data in the following), and head has a capacity of 2 words, i.e.,
2×precision bits (thus, head can represent only integers from zero to 22×precision−1).

5



Figure 3 illustrates what happens when we encode a sequence of symbols using such a
streaming ANS coder. We use precision = 4 here for demonstration purpose.1 While
the first 4 symbols fit into head in the example illustrated in Figure 3, encoding the fifth
symbol x5 would lead to an overflow, i.e., it would lead to head ≥ 22×precision, which
is not allowed. Thus, before we encode x5, we transfer the least significant precision
bits of head to bulk, and we move the remaining part of head by precision bits to the
right. Assuming a good vector implementation, transferring an integer number of bits
from head to bulk requires only constant (amortized) runtime because even if there was
already some data on bulk, we wouldn’t need to move it around.

(b) Continue Figure 3 until you have encoded 10 symbols x1, . . . , x10. Assume that
the symbols have the following information contents:

• x1 has information content 1.5 bits;

• x2 has information content 2.2 bits;

• x3 has information content 1.4 bits;

• x4 has information content 1.7 bits;

• x5 has information content 1.9 bits;

• x6 has information content 0.8 bits;

• x7 has information content 1.1 bits;

• x8 has information content 0.7 bits;

• x9 has information content 1.6 bits; and

• x10 has information content 1.5 bits.

You may ignore the fact that the corresponding probabilities, 2−information content,
cannot be precisely represented in fixed point precision.

You should find that some of the symbols get logically “split up” into two or
even three not necessarily consecutive parts. Further, the first symbol x1 stays
completely on head until the very end in this example.

In case you’re curious, Listing 3 implements streaming ANS in Python. The main dif-
ferences to our SlowAnsCoder class from Listing 2 are that (i) Listing 3 adds a potential
transfer of one word from head to bulk at the beginning of the method push as dis-
cussed above and, correspondingly, a potential transfer of one word from bulk back to
head at the end of the method pop; (ii) all remaining encoding and decoding operations
are performed on head; and (iii) these encoding and decoding operations are no longer
delegated to the methods push and pull of an internal UniformCoder because we’ve
manually inlined these method calls so that Listing 3 is self-contained.
The inlining also allows us to perform some optimizations by replacing multiplications

and divisions involving n = 2precision by equivalent and faster bit shifts. This eliminates
divisions during decoding, which are by far the slowest arithmetic operations on CPUs.2

1In production, one would set precision to about 16 or 32, so that head just fits into a CPU register.
2see, e.g., measurements by Fog: https://www.agner.org/optimize/instruction_tables.pdf

6

https://www.agner.org/optimize/instruction_tables.pdf


1 class StreamingAnsCoder:
2 def __init__(self, precision, compressed=[]):
3 self.precision = precision
4 self.mask = (1 << precision) - 1 # a string of precision 1-bits
5 self.bulk = compressed.copy() # (We will mutate bulk below.)
6 self.head = 0
7 # Ensure that head is at least half filled unless bulk is empty.
8 while len(self.bulk) != 0 and (self.head >> precision) == 0:
9 self.head = (self.head << precision) | self.bulk.pop()

10

11 def push(self, symbol, m): # Encodes one symbol.
12 # Check if encoding onto head would lead to an overflow:
13 if (self.head >> self.precision) >= m[symbol]:
14 # Transfer one word of compressed data from head to bulk:
15 self.bulk.append(self.head & self.mask) # (bitwise and)
16 self.head >>= self.precision
17 # This is the only point where head is (temporarily) less
18 # than half filled despite bulk not being empty.
19

20 # Below as in SlowAnsCoder (Listing 2), just with inlined calls:
21 z = self.head % m[symbol] + sum(m[0:symbol])
22 self.head //= m[symbol]
23 self.head = (self.head << self.precision) | z # (This is
24 # equivalent to " self.head * n + z", just slightly faster.)
25

26 def pop(self, m): # Decodes one symbol.
27 # Begin as in SlowAnsCoder (see Listing 2):
28 z = self.head & self.mask # (same as " self.head % n" but faster)
29 self.head >>= self.precision # (same as " //= n" but faster)
30 for symbol, m_symbol in enumerate(m):
31 if z >= m_symbol:
32 z -= m_symbol
33 else:
34 break
35 self.head = self.head * m_symbol + z
36

37 # Detect whether push transferred data from head to bulk here:
38 if (self.head >> self.precision) == 0 and len(self.bulk) != 0:
39 # Transfer data back from bulk to head (" |" is bitwise or):
40 self.head = (self.head << self.precision) | self.bulk.pop()
41

42 return symbol
43

44 def get_compressed(self):
45 compressed = self.bulk.copy() # (We will mutate compressed below.)
46 head = self.head
47 # Chop head into precision-sized words and append to compressed:
48 while head != 0:
49 compressed.append(head & self.mask)
50 head >>= self.precision
51 return compressed

Listing 3: A complete streaming ANS entropy coder in Python. For a usage example,
see lower part of Listing 2 (replace SlowAnsCoder with StreamingAnsCoder).

7


	Positional Numeral Systems
	Naive Asymmetric Numeral Systems
	Streaming Asymmetric Numeral Systems

