
Solutions to Problem Set 7 discussed:
14 June 2023

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tübingen

Course materials available at https://robamler.github.io/teaching/compress23/

Problem 7.1: Bits-Back Coding

In the lecture, we discussed how to compress a message with a latent variable model

P (X) =
∑
z

P (Z=z,X) where P (Z,X) = P (Z)P (X |Z). (1)

Here, X is the message and Z is a latent variable that is not part of the message. We
discussed that the marginal message distribution P (X) is usually too complicated to be
used directly in an entropy coder like range coding or ANS. However, if the likelihood
P (X |Z) =

∏k
i=1 P (Xi |Z) factorizes over the symbols Xi, then we can encode a given

message x at an optimal (net) bit rate using the so-called bits-back trick.

(a) Encoding: the following table summarizes the three steps to encode a message x
using the bits-back trick with the latent variable model in Eq. 1. We assume here
that we have an entropy coder that operates as a stack (i.e., “last in first out”),
such as ANS, and that the coder already contains some sufficiently large amount
of compressed data from previous unrelated operations before we start with step 1.

Complete the table below, i.e., fill in whether the bit rate grows or shrinks in each
step, and by how many bits. Consider only the amortized bit rate, i.e., don’t
bother about rounding to integers. Then calculate the net amortized bit rate for
encoding the message x, i.e., how many more bits are on the coder after step 3
compared to before step 1. Express the net bit rate in the simplest form possible.

step operation what? with model bit rate ... by how much?

1
□ encode

z P (Z |X=x)
□ grows − log2 P (Z=z |X=x)

✗□ decode ✗□ shrinks

2
✗□ encode

x P (X |Z=z)
✗□ grows − log2 P (X=x |Z=z)

□ decode □ shrinks

3
✗□ encode

z P (Z)
✗□ grows − log2 P (Z=z)

□ decode □ shrinks

net (amortized) bit rate:
✗□ grows − log2

P (X=x|Z=z)P (Z=z)
P (Z=z|X=x)︸ ︷︷ ︸

P (X=x)
□ shrinks

1

https://robamler.github.io/teaching/compress23/

Solution: See filled in table above. Here, the net (amortized) bit rate of
− log2 P (X=x) was calculated by adding the two bit rates from steps 2 and 3
(where we encode, i.e., generate bits) and subtracting from it the bit rate from
step 1 (where we decode, i.e., consume bits). ■

(b) Decoding: now assume you’ve received a bit string generated with the three steps
from part (a). How can you reconstruct both the message x and the original state
of the entropy coder? Fill in the table below so that it inverts all steps from
part (a). Can you do this without looking up the decoder in the lecture notes?
Remember that we’re using a “last in first out”-entropy coder. Verify that, at each
step in the table below, the decoder has access to all the required information.

step operation what? with model

1
□ encode

z P (Z)
✗□ decode

2
□ encode

x P (X |Z=z)
✗□ decode

3
✗□ encode

z P (Z |X=x)
□ decode

Solution: See filled in table above. Here, we inverted (i.e., swapped encoding
with decoding) each step from the encoder and then reversed their order (since we
assumed that the employed entropy coder has “last in first out” semantics). With
this reversed order, each step of the decoder indeed has access to all required infor-
mation: in step 2, the decoder needs the value of z in the likelihood P (X |Z=z),
which it knows from step 1; and in step 3, the decoder can (in principle) calculate
the posterior P (Z |X=x) because the message x is known from step 2. ■

(c) Why do we use an entropy coder with stack semantics? Try to come up with a
similar encoding/decoding scheme as in the two tables above that uses instead
an entropy coder with queue semantics (i.e., “first in first out”), such as range
coding. You’ll probably want to change the order of operations in the encoder
and/or decoder. But at some point, things will go awry. Can you explain why?

Solution: Encoder and decoder have to execute their respective steps 1 and 3 in
opposite order, which is why “first in first out” semantics won’t work. In contrast
to the message x, the latent z is not known to the encoder before encoding starts.
Instead, the encoder obtains z by decoding from some existing data (step 1 of
the encoder). Since the encoder then encodes the message x conditioned on the
obtained z, decoding x requires knowledge of z. Therefore, the encoder needs to
encode z as well in order to communicate it to the receiver (step 3 of the encoder).
Obviously, the encoder can encode z only after obtaining it.

2

1 class SlowAnsCoder:

2 def __init__(self, precision, compressed=0):

3 self.n = 2**precision # (" **" denotes exponentiation.)

4 self.uniform_coder = UniformCoder(compressed) # → Problem Set 6

5

6 def push(self, symbol, m): # Encodes one symbol.

7 z = self.uniform_coder.pop(base=m[symbol]) + sum(m[0:symbol])

8 self.uniform_coder.push(z, base=self.n)

9

10 def pop(self, m): # Decodes one symbol.

11 z = self.uniform_coder.pop(base=self.n)

12 # Find the unique symbol that satisfies z ∈ Zi(symbol)
13 # (using linear search just to simplify exposition):

14 for symbol, m_symbol in enumerate(m):

15 if z >= m_symbol:

16 z -= m_symbol

17 else:

18 break

19 self.uniform_coder.push(z, base=m_symbol)

20 return symbol

21

22 def get_compressed(self):

23 return self.uniform_coder.compressed

Listing 1: Our implementation of Asymmetric Numeral Systems (ANS) from the last
lecture. For a usage example (not needed here), see Listing 2 on Problem Set 6.

The decoder has to invert each step of the encoder: encoding z becomes decoding z
and vice versa. Since z is not known in advance, the decoder can encode it only
after having decoded it, i.e., it has to execute the inverse of encoder step 3 before
the inverse of encoder step 1. This requires a stack -based entropy coder. ■

Problem 7.2: Bits-Back Coding in ANS

Listing 1 shows our implementation of a (slow but simple) Asymmetric Numeral Systems
(ANS) entropy coder from the last lecture. We discussed that ANS itself can already be
seen as an application of the bits-back trick, albeit a very simple instance of it. Recall
that the latent variable model used by ANS to encode a single symbol xi ∈ Xi is

Q(Xi) =
n−1∑
zi=0

Q(Zi=zi, Xi) where Q(Zi, Xi) = Q(Zi)Q(Xi |Zi) (2)

3

with

Q(Zi=zi) =
1

n
∀zi∈{0, . . . , n−1} and Q(Xi=xi |Zi=zi) =

{
1 if zi ∈ Zi(xi)

0 otherwise.
(3)

Here, the ranges Zi(xi) partition the range {0, . . . , n−1} into pairwise disjoint subranges

of sizes |Zi(xi)| =: mi(xi) chosen such that the resulting marginals Q(Xi=xi) =
mi(xi)

n

approximate given symbol probabilities P (Xi=xi) (and such that
∑

xi∈Xi
mi(xi) = n).

(a) Go over the two tables in Problem 7.1. For each step of the encoding and decoding
operation, identify the line in Listing 1 that correspond to this step. You should
find that one of the three steps in both the encoder and the decoder is actually
not necessary in the specific case of ANS. Can you explain why?

Solution: When analyzing complex entropy coding tricks, it is often easiest to
start with the decoder, which is more constrained than the encoder because it has
less information at its disposal (i.e., it doesn’t initially know the message). Once
the decoding operation is specified, encoding can be seen as inference over the
decoder (i.e., the encoder technically doesn’t need to follow any fixed specification
as long as it can somehow “trick” the decoder into decoding the desired message).

• For the decoder, we find:

Step 1: Decode zi with prior Q(Zi): line 11 in Listing 1, which calls the de-
coding method pop on an encapsulated (trivial) entropy coder to
obtain a value zi. Since we use a UniformCoder with base=self.n

here, this encoding operation uses a uniform entropy model over
{0, . . . , n− 1}, corresponding to Q(Zi) (see Eq. 3).

Step 2: Decode xi with likelihood Q(Xi |Zi=zi): this operation is not nec-
essary in the case of ANS because the likelihood in Eq. 3 is de-
terministic: once the decoder knows zi, there is only a single xi

for which Q(Xi=xi |Zi=zi) is nonzero. Thus, we can identify xi

(see lines 14-18) without the need to decode any additional data.

Step 3: Encode zi with posterior Q(Zi |Xi=xi): line 19, which calls the
encoding method push to encode zi. We’ll see in part (b) that the
entropy model employed on this line is indeed the posterior.

• For the encoder, we find accordingly:

Step 1: Decoding zi with posterior Q(Zi |Xi=xi): line 7.

Step 2: Encoding xi with likelihood Q(Xi |Zi=zi): not necessary for ANS;
as discussed above, the decoder can identify xi from zi alone.

Step 3: Encode zi with prior Q(Zi): line 8.

■

4

(b) Calculate the contribution to the net amortized bit rate from each step (i.e., eval-
uate the cells in the last column of the table in Problem 7.1 (a)). You’ll need to
calculate the posterior Q(Zi |Xi=xi) for this. Express your results in terms of
the integers n and mi(xi). In part (a), you identified a step that doesn’t actually
correspond to any lines of code in Listing 1. What do you obtain for this step’s
contribution to the net amortized bit rate in the case of ANS?

Solution: We first calculate the posterior distribution Q(Zi=zi |Xi=xi). In
the calculation below, we’ll need the marginal data distribution Q(Xi=xi), which
is given by

∑n−1
zi=0 Q(Zi=zi)Q(Xi=xi |Zi=zi). In this sum, the prior Q(Zi=zi)

is always 1
n
, and the likelihood evaluates to one for the |Zi(xi)| = mi(xi) terms

where zi ∈ Zi(xi) and to zero otherwise. Thus, we have Q(Zi=zi) =
mi(xi)

n
, as was

already claimed in the problem statement. We then obtain therefor posterior

Q(Zi |Xi) =
Q(Zi, Xi)

Q(Xi)
=

Q(Zi)Q(Xi |Zi)

Q(Xi)

=⇒ Q(Zi=zi |Xi=xi) =
1/n

mi(xi)/n
Q(Xi=xi |Zi=zi) =

{
1

mi(xi)
if zi ∈ Zi(xi)

0 otherwise.

In other words, Q(Zi |Xi=xi) is a uniform distribution over Zi(xi).

We then find for the contributions to the amortized bit rate for the three steps of
the encoder (decoder steps have opposite sign and are numbered in reverse):

Step 1: Decoding zi with posterior Q(Zi |Xi=xi):
consumes − log2Q(Zi=zi |Xi=xi) = log2mi(xi) bits
since this step always decodes a zi that satisfies zi ∈ Zi(xi).

Step 2: Encoding xi with likelihood Q(Xi |Zi=zi):
contributes − log2Q(Xi=xi |Zi=zi) = − log2(1) = 0 bits,
reflecting the observation from part (a) that, once zi is known, no
additional information is needed to obtain xi in this specific model.

Step 3: Encode zi with prior Q(Zi):
contributes − log2Q(Zi=zi) = log2 n bits.

Thus, the net bit rate of encoding a single symbol xi with ANS works out to be
log2 n − log2mi(xi) = − log2

mi(xi)
n

= − log2Q(Xi=xi) bits, as discussed in the
lecture. ■

Remark. The model used by ANS (Eqs. 2-3) uses a separate latent variable Zi for each
symbol Xi. Therefore, in and of itself, ANS does not yet model any correlations between
symbols. To encode correlated symbols effectively with ANS, one uses another layer of
the bits-back trick on top of ANS, precisely as discussed in Problem 7.1.

5

msg. len bits per character
(chars) Huffman Shannon inf. cont. gzip bzip2 bzip2’

validation set 106,864 2.38 2.72 2.12 3.43 2.82 2.40
test set 219,561 2.38 2.73 2.12 3.33 2.65 2.38

Table 1: Empirical bit rates of our autoregressive model from Problem Set 3.

Problem 7.3: Range Coding With an Autoregressive
Model for English Text

In Problem 3.2 on Problem Set 3, you trained an autoregressive machine learning model
(parameterized by a recurrent neural network) to model the probability distribution of
English text. You then used this model as an entropy model for compressing text. Back
then, you used a Huffman coder since we hadn’t introduced stream codes yet.
In this problem, you’ll replace the Huffman coder with a range coder, and you’ll

evaluate empirically how this affects compression performance (i.e., the bit rate).

(a) Before you start coding: why is it a good idea to replace Huffman coding with a
stream code? Table 1 shows the bit rates we obtained back on Problem Set 3. In
addition, the column “inf. cont.” shows the information content of the validation
and test set under the trained model. Make an educated guess: what bit rates do
you expect to obtain if you replace Huffman coding with a stream code?

Solution: By amortizing compressed bits over multiple symbols, a stream code
like range coding can achieve better bit rates than a symbol code like Huffman
coding. A good stream code implementation should achieve a bit rate very close
to the information content. Thus, based on Table 1, we expect to obtain 2.12 bits
per character when we use a range coder with our autoregressive model. This would
correspond to about 11% reduction in bit rate compared to Huffman coding.

Since the overhead of symbol codes is proportional to the number of symbols in
a message, the relative impact of amortization is more significant for compression
methods that spread the information content of a message over more symbols, as
is often the case in lossy image compression (discussed starting in Lecture 9). ■

(b) Why do we choose to use range coding and not ANS for this model?

Solution: Range coding operates as a queue (“first in first out”) whereas ANS
operates as a stack (“last in first out”). For autoregressive models, it’s much easier
to encode with queue semantics because both encoder and decoder have to unroll
the autoregressive model in the same direction anyway.

It would technically be possible to use a stack-based entropy coder with an autore-
gressive model. But the encoder would first have to unroll the model for the entire
message and remember the model parameters for all symbols. Then, the encoder

6

would have to encode the symbols in reverse order, so that the decoder can decode
in normal order (the decoder can’t decode in reverse order because it wouldn’t be
able to unroll the model to the end without knowledge of the message). ■

(c) I won’t make you implement the core range coding algorithm because its implemen-
tation is a bit involved due to some edge cases, and I don’t think you’ll learn much
from it. Instead, we’ll use a pre-built range coder provided by the constriction

library, which was specially developed with research and teaching use cases in
mind.1 Install constriction by executing (preferably in a virtual environment):

python3 -m pip install constriction~=0.3.1

Then try out the first code example from the API reference of constriction’s
range coder.2 The example should execute without errors and print some example
message (i.e., a sequence of symbols), encode it, print the compressed representa-
tion, and then decode it and print the reconstructed message.

Read the code example and make sure you understand what it does. You can
ignore anything related to message part2, which shows how to use a model class
called QuantizedGaussian—we won’t need this type of model here, only the
Categorical model that’s used for encoding message part1 in this example.

In the following, you’ll apply your newly acquired range coding skills to the autoregres-
sive model from Problem 3.2. Don’t worry if you haven’t completed Problem 3.2, you
can always download the proposed solutions3 from the course website. The PDF docu-
ment that’s part of the solutions also contains instructions for how to set up your virtual
environment and train the model (you’ll probably have to reinstall constriction in the
new virtual environment using the same command as in part (c)).

(d) Start with the encoder and don’t bother about adding an “end of file” symbol
yet (see part (e) below). Rename the file compression.py, to huffman.py; then
copy it to a new file named range-coding.py. In this file, remove the classes
HuffmanEncoder and HuffmanDecoder, and replace the substring “ huffman” in all
function names by “ range”. Then import constriction and port the functions
encode range and encode range file by applying what you’ve learned in part (c)
about the class constriction.stream.queue.RangeEncoder.

To test your (preliminary) encoder, run:

python3 range-coding.py shakespeare.pt \

dat/shakespeare.val.txt encode

(You might also want to create a much smaller test file to very quickly check for
obvious bugs.)

1If you run into problems with the constriction library, please let me know or report an issue at
https://github.com/bamler-lab/constriction/issues

2https://bamler-lab.github.io/constriction/apidoc/python/stream/queue.html
3https://robamler.github.io/teaching/compress23/problem-set-03-solutions.zip

7

https://github.com/bamler-lab/constriction/issues
https://bamler-lab.github.io/constriction/apidoc/python/stream/queue.html
https://robamler.github.io/teaching/compress23/problem-set-03-solutions.zip

Do you obtain the bit rate that you were expecting in part (a)?

Hint: When we used Huffman coding in Problem 3.2, we constructed a new in-
stance of HuffmanEncoder for each character in the message. This won’t work for
a stream code like range coding since stream codes have to keep track of an internal
coder state so that they can amortize bits over multiple encoded symbols. There-
fore, constriction’s RangeEncoder should be constructed only once per message
(i.e., outside of the loop for char in tqdm(message)). Inside the for-loop, you
should only construct a new Categorical4 entropy model from the symbol proba-
bilities. Assuming this model is called entropy model, you can use it together with
the range encoder that you constructed outside the for-loop to encode a symbol
as follows: range encoder.encode(target py, model), where target py is an
integer that identifies the character, as in the solutions to Problem 3.2.

Note that the method encode does not return any code word—after all, there are
no code words in stream codes. The method instead mutates a growing compressed
representation encapsulated by the RangeEncoder. After the for-loop, you can ob-
tain this compressed representation by calling range encoder.get compressed(),
as you’ve practiced in part (c). This returns the compressed representation as a
numpy-array of unsigned 32-bit integers, which you can write to a file with the
method .tofile(filename).

Solution: The solutions are provided in the accompanying git bundle.

• If you already have a directory with the code from Problem Set 3 or its
provided solutions, then cd into that directory and run:

git stash

git checkout problem-set-3

git pull path/to/autoreg-range-coding-solutions.gitbundle

source venv/bin/activate

• If you don’t yet have a directory with the code, run instead:

git clone path/to/autoreg-range-coding-solutions.gitbundle \

char-rnn-compression

cd char-rnn-compression

python3 -m pip install virtualenv

python3 -m virtualenv -p python3 venv

source venv/bin/activate

python3 -m pip install torch tqdm unidecode constriction~=0.3.1

If you haven’t done so already, train the model with the following command:

python3 train.py dat/shakespeare.txt

4Documentation: https://bamler-lab.github.io/constriction/apidoc/python/stream/model.

html#constriction.stream.model.Categorical

8

https://bamler-lab.github.io/constriction/apidoc/python/stream/model.html#constriction.stream.model.Categorical
https://bamler-lab.github.io/constriction/apidoc/python/stream/model.html#constriction.stream.model.Categorical

While python libraries are being installed or the model is being trained, read and
understand the implementation in the file range-coding.py. Refer to this problem
set for explanations (note that the code also covers parts (e) and (f) below).

To test an encoder/decoder round trip, run (after having trained the model):

python3 range-coding.py shakespeare.pt \

dat/shakespeare.val.txt encode

ls -l dat/shakespeare.val.txt.compressed

python3 range-coding.py shakespeare.pt \

dat/shakespeare.val.txt.compressed decode > decoded.txt

diff dat/shakespeare.val.txt decoded.txt

Once the encoder is done, it prints both the information content of the encoded
text and the actual bit rate. You will likely obtain a slightly different information
content than what’s reported in Table 1 since we didn’t set a random seed when
training the model. But what’s important is that the bit rate should be very close
to the information content (less than 0.1% overhead). The bit rate should also
exactly match the file size reported by ls (multiply by 8 to convert from bytes to
bits). The above diff command should terminate successfully without printing
anything, indicating that the reconstructed text equals the original one. ■

(e) As we’ve discussed in the lecture, when decoding a variable length-message, stream
codes cannot use the length of the compressed representation to reliably infer the
length of the message. We have to explicitly encode and “end of file” (EOF) signal.

Add the following line of code immediately before constructing the entropy model:

extended_probs = np.append(unnormalized_probs.numpy(), 0.0)

This extends the list of (unnormalized) symbol probabilities by one more entry
with value zero. Then use these extended probs to construct your Categorical
entropy model. The constructor of Categorical internally normalizes the pro-
vided probabilities, approximates them in fixed point precision, and it also ensures
that no probability gets rounded to zero (as this would make it impossible to en-
code the corresponding symbol). Thus, it will replace our zero probability for the
EOF symbol with the smallest representable positive probability (2−24).

Finally, you need to actually encode a single EOF symbol after encoding the mes-
sage. Unroll the autoregressive model for one more step after for-loop is done
(because the decoder will do this too since it doesn’t know that the message is
over). Then, instead of encoding another character, encode the EOF symbol,
which has index len(extended probs) - 1.

Solution: See accompanying git bundle, which can be extracted as described
in the solutions to part (d) above. ■

(f) Now port the decoder from Huffman coding to range coding. Analogous to the
encoder, construct a single RangeDecoder outside of the loop in the function

9

decode range. The constructor expects a single argument, which must be a
numpy array of unsigned 32-bit integers that contains the compressed represen-
tation. You can read it from a file with np.fromfile(filename, np.uint32).
Inside the loop, you’ll again want to construct a Categorical entropy model from
the extended probs as in part (e). Then decode a symbol by using the statement
char index = range decoder.decode(entropy model). Break out of the loop
if char index is the EOF symbol; otherwise, look up the character indexed by
char index and print it, as in the solutions to Problem 3.2.

Encode and then decode the validation and test files in the dat subdirectory and
verify that the decoder reconstructs the original data.

Solution: See accompanying git bundle, which can be extracted as described
in the solutions to part (d) above. ■

(g) Notice that, in part (e), we extend the alphabet by an EOF symbol even while we
are still inside the for-loop, i.e., even when we know that we won’t encode the
EOF symbol at this point. Why is this necessary? Wouldn’t it suffice to include
the EOF symbol in the alphabet only when we actually need it, i.e., only in the
single additional step after the for loop? Try it out: undo the change in the
encoder that adds the EOF symbol to the alphabet inside the for-loop (where we
seemingly don’t need it). Then encode and decode some data. Does it still work?

Solution: You will probably be able to decode a few thousand characters without
any issues. But unless you’re very lucky (or unlucky?), at some point, you’ll either
get an error message upon decoding or you’ll decode a wrong message.

In lossless compression, encoder and decoder have to use precisely the same en-
tropy model. Since the decoder doesn’t know where the message ends until it has
fully decoded it, the decoder has to use an entropy model that assigns a nonzero
probability to the EOF symbol at every position in the message. Therefore, so
does the encoder. ■

10

	Bits-Back Coding
	Bits-Back Coding in ANS
	Range Coding With an Autoregressive Model for English Text

