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Problem 8.1: Understanding the ELBO
In the lecture, we introduced the evidence lower bound (ELBO),

ELBO(ϕ, x) := EQϕ(Z)
[

log P (Z, X=x) − log Qϕ(Z)
]
. (1)

Here, P (Z, X) = P (Z)P (X | Z) models a generative process with latent variables Z and
observed variables (i.e., the message) X. Further, Qϕ(Z) is the variational distribution,
which has variational parameters ϕ.

This problem will give you some intuition for the ELBO. Let’s assume for simplicity
that both Z and X are discrete. We showed in the lecture that the ELBO is then the
negative expected net bit rate of bits-back coding with the approximate posterior Qϕ(Z),

ELBO(ϕ, x) = −Es
[
Rnet

ϕ (x | s)
]

(2)

where s is a random bit string (“side information”) from which we decode with the
model Qϕ(Z) in bits-back coding. Eq. 2 motivated us to maximize the ELBO over the
variational parameters ϕ (as this is equivalent to minimizing the expected net bit rate):

ϕ∗ := arg max
ϕ

ELBO(ϕ, x). (3)

You’ll now show three different ways in which maximizing the ELBO is usually motivated
in the (non-compression) literature.

(a) The term EQϕ(Z)[− log Qϕ(Z)] on the right-hand side of Eq. 1 is the entropy HQϕ
[Z]

of Z under the variational distribution. Thus, we can express the ELBO as follows,

ELBO(ϕ, x) = EQϕ(Z)
[

log P (Z, X=x)
]

+ HQϕ

[
Z
]
. (4)

(i) Imagine the entropy term HQϕ
[Z] was absent, i.e., pretend that we maximize

only the first term on the right-hand side of Eq. 4. Argue (in words) that
setting ϕ∗ = arg maxϕ EQϕ(Z)

[
log P (Z, X = x)

]
would make the resulting

distribution Qϕ∗(Z) deterministic, i.e., there would be some z∗ such that
Qϕ∗(Z=z∗) = 1 and Qϕ∗(Z ̸=z∗) = 0 (assuming that this distribution is part
of the variational family). What is the value of z∗?

Solution: Maximizing EQϕ(Z)[log P (Z, X=x)] over ϕ amounts to searching
for the distribution Qϕ ∈ Q such that, if we draw samples z ∼ Qϕ(Z), these
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samples have high log P (Z=z, X=x) in expectation. Clearly, we’ll get the
highest expectation if all samples z ∼ Qϕ(Z) maximize log P (Z=z, X=x).
Thus, EQϕ(Z)[log P (Z, X=x)] is maximized by a deterministic distribution
Qϕ∗(Z) as described in the problem, which puts all probability mass on
z∗ = arg maxZ log P (Z, X=x) = arg maxZ P (Z, X=x). The value z∗ is
called the “maximum a-posteriori” (MAP) since it also maximizes the poste-
rior P (Z | X=x) = P (Z,X=x)

P (X=x) (since the denominator P (X=x)) is a constant.
■

(ii) Now let’s return to the full expression in Eq. 4 that includes the entropy term
HQϕ

[Z]. Argue why this entropy term acts against the variational distribution
becoming deterministic (hint: what is the entropy of such a deterministic
distribution that puts all its probability mass on a single value?).

Solution: Including the entropy term HQϕ
[Z] in the objective function

penalizes distributions Qϕ(Z) with low entropy. For a deterministic distri-
bution Qϕ∗(Z) as described in the problem, we find HQϕ∗ [Z] = 0, which is
the smallest possible entropy of a discrete random variable. Thus, such a de-
terministic distribution is particularly penalized. Variational inference favors
variational distributions that capture some estimate of our uncertainty of Z
(this will become more evident in parts (b) and (c) below).
Technical remark: the fact that HQϕ∗ [Z] := EQϕ∗ (Z)[− log Qϕ∗(Z)] is zero for
a deterministic distribution can be understood most easily if one interprets
the expectation EQϕ∗ (Z)[ · · · ] as an average over many samples z ∼ Qϕ∗(Z).
For a deterministic distribution, all these samples equal z∗, which satisfies
Qϕ∗(Z=z∗) = 1 and thus − log Qϕ∗(Z=z∗) = 0. If one instead follows
the measure-theoretical definition of the expectation from the lecture, i.e.,
HQϕ∗ [Z] = −∑

z Qϕ∗(Z=z) log Qϕ∗(Z=z), then most of the terms in the sum
are expressions of the form “0 × ∞”. In measure theory, such expressions are
considered to evaluate to zero. This is well motivated if we consider a distri-
bution that is almost deterministic, but that still assigns a small probability
ϵ > 0 to all Z ̸= z∗. Taking the limit ϵ → 0, we indeed find, using L’Hôpital’s
rule (⋆): lim

ϵ→0
(ϵ log ϵ) = lim

ϵ→0
log ϵ
1/ϵ

(⋆)= lim
ϵ→0

1/ϵ
−1/ϵ2 = − lim

ϵ→0
ϵ = 0. ■

(b) Show that the ELBO from Eq. 1 can also be expressed as follows,

ELBO(ϕ, x) = EQϕ(Z)
[

log P (X=x | Z)
]

− DKL
(
Qϕ(Z)

∣∣∣∣∣∣P (Z)
)
. (5)

(Hint: it’s easier to start with Eq. 5 and derive Eq. 1 from it rather than trying it
the other way round.)
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Solution: Writing out the KL-divergence (see end of Lecture 3), we find

EQϕ(Z)
[

log P (X=x | Z)
]

− DKL
(
Qϕ(Z)

∣∣∣∣∣∣P (Z)
)

= EQϕ(Z)
[

log P (X=x | Z) + log P (Z) − log Qϕ(Z)
]

= EQϕ(Z)
[

log P (Z, X=x) − log Qϕ(Z)
] (Eq. 1)= ELBO(ϕ, x).

■

Eq. 5 tells us that maximizing the ELBO over ϕ can be interpreted as regularized
maximum likelihood estimation. To see this, answer the following two questions
(no calculation required): what distribution Qϕ∗(Z) would we get if we maximized

(i) only the first term on the right-hand side of Eq. 5; or

Solution: Following an argument analogous to part (a) (i), maximizing
EQϕ(Z)[log P (X = x | Z)] over ϕ would again lead to a deterministic varia-
tional distribution that puts all probability mass on a single value z∗. This
time, however, z∗ would not be the MAP estimate but instead the maximum
likelihood estimate (MLE), z∗ = arg maxZ P (X=x | Z). ■

(ii) only the second term on the right-hand side of Eq. 5?

Solution: Since the KL-divergence is always nonnegative (Problem 3.1 (a)),
the maximum value of the negative KL-divergence (i.e., the minimal value of
the KL-divergence) is achieved if DKL

(
Qϕ(Z)

∣∣∣∣∣∣P (Z)
)

= 0, which is satisfied
exactly if the variational distribution Qϕ(Z) matches the prior P (Z) almost
everywhere (see again Problem 3.1 (a)). ■

In reality, we maximize over the sum of both terms, and so Qϕ∗(Z) interpolates
between (i) and (ii). Which of the two terms in Eq. 5 can be seen as a regularizer?

Solution: The KL-term in Eq. 5 can be seen as a regularizer as it is independent
of the data x, and it encourages Qϕ(Z) to stay close to the prior P (Z), which
is typically a relatively broad distribution with a relatively high entropy, i.e., it
doesn’t overfit to any particular data. Without this KL-term, optimization would
find the MLE, i.e., the value of the latent variable that best explains the observed
data, with no regard to any prior knowledge. In a machine learning setup, the
MLE would therefore be prone to overfitting, i.e., matching accidental patterns
in the data and failing to generalize to new data. For a well-chosen prior, the
KL-term counteracts the tendency to overfit, which is referred to as regularizing.

■

(c) Show that the ELBO from Eq. 1 can also be expressed as follows,

ELBO(ϕ, x) = log P (X=x) − DKL
(
Qϕ(Z)

∣∣∣∣∣∣P (Z | X=x)
)
. (6)
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(Hint: it’s again easier to start with Eq. 6 and derive Eq. 1 from it rather than
trying it the other way round.)

Solution: Writing out again KL-divergence and pulling the evidence log P (X=x)
(which does not depend on z) into the expectation, we find

log P (X=x) − DKL
(
Qϕ(Z)

∣∣∣∣∣∣P (Z | X=x)
)

= EQϕ(Z)
[

log P (X=x) + log P (Z | X=x) − log Qϕ(Z)
]

= EQϕ(Z)
[

log P (Z, X=x) − log Qϕ(Z)
] (Eq. 1)= ELBO(ϕ, x)

■

(i) Assume, for now, that the variational family Q = {Qϕ}ϕ contains all prob-
ability distributions over Z, and that the generative model P is fixed (we’ll
discuss how to learn the generative model next week). What would be the
optimal variational distribution Qϕ∗(Z) that maximizes the right-hand side
of Eq. 6? Maximizing the ELBO is called “variational inference” because it
is related to Bayesian inference. Can you explain what the relation is?

Solution: For a fixed generative model P , the perfect variational distribu-
tion would be the true posterior P (Z | X=x), if this distribution was con-
tained in the variational family (which is typically not the case because the
true posterior is typically too complicated). Setting Qϕ(Z) = P (Z | X=x)
would set the KL-divergence on the right-hand side of Eq. 6 to zero. This
would maximize the ELBO since the remaining term log P (X=x) (called
“evidence”) is a constant for a constant generative model.
Maximizing the ELBO is called “variational inference” because it turns Bayes-
ian inference (i.e., the task of finding the posterior P (Z | X=x) of a generative
model P for given data x) into an optimization problem where one varies over
parameters ϕ until one finds the parameters ϕ∗ for which Qϕ∗(Z) approximates
P (Z | X=x) as well as possible. ■

(ii) In practice, the variational family Q is only a subset of all probability distribu-
tions over Z. Since we maximize the ELBO only over variational distributions
from Q, the resulting optimal variational distribution Qϕ∗(Z) will typically
be somewhat different from what you found in (i). This mismatch will lead
to an overhead in the expected net bit rate when we use Qϕ∗(Z) for bits-back
coding (see Eq. 2). Which term in Eq. 6 expresses this overhead?

Solution: Bits-back coding with the true posterior has a net bit rate that
is independent of z and given by − log P (X=x). If we replace the true pos-
terior with a variational distribution Qϕ(Z), then the net bit rate depends
on z. In expectation, the net bit rate is the negative ELBO (see Eq. 2),
i.e., according to Eq. 6, the expected net bit rate is then − log P (X=x) +
DKL(Qϕ(Z) || P (Z | X=x)). Thus, replacing the true posterior with a varia-
tional distribution leads to an overhead of DKL(Qϕ(Z) || P (Z | X=x)). ■
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Black-Box Variational Inference (BBVI)
Problems 8.2 and 8.3 below discuss two methods for maximizing the ELBO (Eq. 1)
numerically. The most efficient way to maximize the ELBO is the so-called coordinate
ascent variational inference (CAVI) algorithm (see, e.g., review by Blei et al. (2017)).
While this algorithm is extremely fast (and should therefore be preferred whenever
possible!), its application is limited to generative models and variational families where
relevant parts of the expectation ELBO(ϕ, x) = EQϕ(Z)

[
log P (Z, X=x) − log Qϕ(Z)

]
can be evaluated analytically, and where one can then analytically solve equations of
the form ∇ϕi

ELBO(ϕ, x) = 0. This would essentially forbid the use of neural networks.
Mainstream adoption of variational inference only occurred after the invention of so-

called black box variational inference (BBVI), which replaces analytic calculations of
integrals over z by numerical estimates based on samples z ∼ Qϕ(Z), and analytic
solutions of the equation ∇ϕi

ELBO(ϕ, x) = 0 by stochastic gradient descent (SGD). As
discussed in the lecture, SGD requires an unbiased gradient estimate ĝ(z) that we can
calculate from one (or more) samples z ∼ Qϕ(Z) and that satisfies

Ez∼Qϕ(Z)
[
ĝ(z)

]
= ∇ϕ ELBO(ϕ, x) = ∇ϕ

(
Ez∼Qϕ(Z)

[
ℓ(ϕ, x, z)

])
(7)

where ℓ(ϕ, x, z) is the expression in the expectation in Eq. 1, i.e.,

ℓ(ϕ, x, z) = log P (Z, X=x) − log Qϕ(Z) (8)

We saw in the lecture that obtaining an unbiased gradient estimate for the ELBO is
nontrivial since the distribution Qϕ(Z) from which we draw z in Eq. 7 itself depends
on ϕ, and so the gradient estimate has to take into account that changing ϕ also changes
which samples z we obtain. In Problems 8.2 and 8.3 below, you’ll derive two solutions
to this issue.

Problem 8.2: BBVI With Reparameterization Gradients
Assume, for example, that z ∈ Rd lives in some continuous space of dimension d, and
that the variational family is the set of all fully factorized normal distributions, i.e., the
variational distribution Qµ,σ(Z) has a probability density function

qµ,σ(z) =
d∏

i=1
N (zi; µi, σ2

i ). (9)

Here, the means µ ≡ (µi)d
i=1 and standard deviations σ ≡ (σi)d

i=1 together comprise
the variational parameters ϕ over which we maximize the ELBO, and N denotes the
so-called normal distribution, which has the density function

N (zi; µi, σ2
i ) = 1√

2πσ2
i

exp
[

− (zi − µi)2

2σ2
i

]
. (10)
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(a) Convince yourself that, for such a variational distribution, the ELBO can be ex-
pressed as follows,

ELBO(µ, σ, x) = Ez∼Qµ,σ(Z)
[
ℓ(µ, σ, x, z)

]
= Eϵ ∼ N (0,I)

[
ℓ(µ, σ, x, µ+σ⊙ϵ)

]
(11)

where N (0, I) is the d-dimensional standard normal distribution (i.e., with mean 0
and standard deviation 1 in each direction), and ⊙ is elementwise multiplication.

Solution: The claim here is that, if we draw a sample ϵi ∼ N (0, 1) from a
standard normal distribution and then scale ϵi by σi and shift it by µi, the result
is distributed from a normal distribution N (µi, σ2

i ) with mean µi and standard
deviation σi. In fact, this is how sampling from a normal distribution with user-
defined mean and standard deviation is typically implemented in software libraries.
I didn’t expect a formal derivation here. It’s more important that you understand
why Eq. 11 holds. But one way to formally derive the equivalence would go
back to how we defined probability density functions (PDFs) in the lecture: the
statement that qµ,σ defined in Eqs. 9-10 is a PDF of Qµ,σ(Z) means that, for
all measurable functions f , the expectation EQµ,σ(Z)[f(Z)] can be expressed as
EQµ,σ(Z)[f(Z)] =

∫
qµ,σ(z)f(z)dz. We now integrate by substituting z = µ+σ ⊙ϵ,

i.e., zi = µi + σiϵi for all i ∈ {1, . . . , d},

EQµ,σ(Z)
[
f(Z)

]
=
∫

qµ,σ(z)f(z) dz

=
∫ ∣∣∣∣∣ det

(
∂z
∂ϵ

)∣∣∣∣∣ qµ,σ(µ + σ ⊙ ϵ) f(µ + σ ⊙ ϵ) dϵ

= Eϵ∼Q0

[
f(µ + σ ⊙ ϵ)

]
where, in the last equality, we interpreted the integral over ϵ as an expectation
under a distribution Q0, which has the PDF

q0(ϵ) =
∣∣∣∣∣ det

(
∂z
∂ϵ

)∣∣∣∣∣ qµ,σ(µ + σ ⊙ ϵ).

We find for the Jacobi determinant

det
(

∂z
∂ϵ

)
= det

(
diag(σ1, σ2, . . . , σd)

)
=

d∏
i=1

σi

and thus,

q0(ϵ) =
(

d∏
i=1

σi

)
qµ,σ(µ + σ ⊙ ϵ)

(Eqs. 9-10)=
d∏

i=1

σi√
2πσ2

i

exp
−

(
(µi + σiϵi) − µi

)2
2σ2

i


=

d∏
i=1

1√
2π

exp
[
− ϵ2

i

2

]
=

d∏
i=1

N (ϵi; 0, 1) = N (ϵ; 0, I)
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Thus, we’ve shown that EQµ,σ(Z)[f(Z)] = Eϵ∼N (0,I)[f(µ+σ ⊙ϵ)] for all measurable
functions f . Eq. 11 applies this relation to the function f(z) := ℓ(µ, σ, x, z). ■

(b) Using Eq. 11, come up with a gradient estimate ĝ(ϵ) that satisfies Eϵ∼N (0,I)
[
ĝ(ϵ)

]
=

∇µ,σ ELBO(µ, σ, x) (no calculation required; your result should fit into half a line).

Solution: Since the distribution N (0, I) under which we evaluate the expectation
on the right-hand side of Eq. 11 does not depend on the variational parameters µ
and σ, we can pull the gradient operator “∇µ,σ” into the expectation and obtain:

∇µ,σ ELBO(µ, σ, x) = Eϵ ∼ N (0,I)
[
ĝ(ϵ)

]
where ĝ(ϵ) = ∇µ,σ ℓ(µ, σ, x, µ + σ ⊙ ϵ).

■

(c) The code below is taken verbatim from the paper “Black-Box Stochastic Varia-
tional Inference in Five Lines of Python” (Duvenaud and Adams, 2015). Convince
yourself that it implements the right-hand side of Eq. 11. Identify each function
argument and local variable with a mathematical symbol on this problem set.

Note: the function npr.randn draws samples from the standard normal N (0, I),
and mvn.entropy calculates HQϕ

[Z] analytically to reduce gradient variance. There
seems to be a typo in the return statement: logprob should be logprob_func.

Solution: The first line in the function body extracts the variational parameters
mu (i.e., the means µ) and cov (i.e., the variances (σ2

i )d
i=1) from the function

argument variational_params (which corresponds to ϕ). Note that the second
half of variational_params contains the logarithm of the variances rather than
the variances themselves. This is generally a good idea because (i) it ensures that
the variances are always positive (as they are obtained by taking the exponential of
a real values) and (ii) optimizing variances in log space is numerically easier since
it effectively adjusts gradient steps relative to the size of each σi (thus allowing
SGD to converge to accurate estimates of σi for dimensions i where it should be
small while still being able to reach large values of σi for other dimensions).
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The second line in the function body implements the expression µ + σ ⊙ ϵ from
Eq. 11, where the function npr.randn draws ϵ ∼ N (0, I). The return statement
evaluates the part of ℓ(µ, σ, x, z) that contains the generative model P , which
is provided as a function argument logprob_func (misspelled as logprob in the
return statement). For the part of ℓ(µ, σ, x, z) that contains the variational dis-
tribution Qµ,σ(Z), the expectation EQµ,σ(Z)[− log Qµ,σ(Z)] = HQµ,σ [Z] is calculated
analytically. The last line of the code obtains ĝ(Z) via automatic differentiation.
Warning: While the paper demonstrates how easy it is to implement reparameter-
ization gradients, it unfortunately sets a bad example in the way how it calculates
the entropy, which is both unnecessarily computationally expensive and poten-
tially numerically unstable for high dimensional latent spaces. The expression
mvn.entropy(mu, np.diag(cov)) in the return statement explicitly constructs
the d×d covariance matrix Σ := diag(σ2

1, . . . , σ2
d) and then calculates the entropy of

N (µ, Σ). The entropy of a multidimensional normal distribution with arbitrary co-
variance matrix Σ is 1

2 log det Σ+const. Unfortunately, calculating the determinant
has run-time complexity O(d3), and its gradient is potentially numerically unstable.
It would be much better to exploit the fact that Qµ,σ(Z) = ∏d

i=1 N (zi, µi, σ2
i ) fac-

torizes over all i (“mean field approximation”), which implies that the entropy sep-
arates (see Problem 4.3 (d)): HQµ,σ [Z] = ∑d

i=1 HN (µi,σ2
i )[Zi] = ∑d

i=1 log σi + const.
It can thus be calculated in O(d) time and differentiated numerically safely. ■

Problem 8.3: BBVI With Score Function Gradients
While the reparameterization gradients from Problem 8.2 can be generalized beyond a
normal distribution, they don’t exist for all variational distributions, in particular not for
discrete Z (unless an approximation is used (Jang et al., 2016; Maddison et al., 2016)).
For such variational distributions, one can use the more general score function gradient
estimates (aka the “REINFORCE method” (Ranganath et al., 2014)),

ĝ(z) := ĝ(1)(z) + ĝ(2)(z) (12)

where

ĝ(1)(z) :=
(
∇ϕ log Qϕ(Z=z)

)
ℓ(ϕ, x, z)

ĝ(2)(z) := ∇ϕℓ(ϕ, x, z) = −∇ϕ log Qϕ(Z=z)
(13)

with ℓ(ϕ, x, z) defined in Eq. 8.

(a) Show that ĝ(z) is an unbiased gradient estimate of the ELBO, i.e., it satisfies Eq. 7.
Hint: write out the expectations on both sides of Eq. 7 as a weighted average:
Ez∼Qϕ(Z)[ · · · ] = ∑

z Qϕ(Z=z) [ · · · ]. On the left-hand side, use ∇ξ log f(ξ) =
1
ξ

∇ξ f(ξ) for ĝ(1)(z); on the right-hand side, pull “∇ϕ” into the sum and use the
product rule of differential calculus. Then compare both sides term by term.
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Solution: We’ll do the derivation for discrete Z. For continuous Z, the proof
is analogous, except that sums are replaced by integrals and probability mass
functions are replaced by probability density functions.
For the left-hand side of Eq. 7, we obtain

Ez∼Qϕ(Z)
[
ĝ(z)

]
=
∑

z
Qϕ(Z)ĝ(z)

=
∑

z
Qϕ(Z=z)

((
∇ϕ log Qϕ(Z=z)

)
ℓ(ϕ, x, z) + ∇ϕℓ(ϕ, x, z)

)

=
∑

z
Qϕ(Z=z)

(
∇ϕQϕ(Z=z)

Qϕ(Z=z) ℓ(ϕ, x, z) + ∇ϕℓ(ϕ, x, z)
)

=
∑

z

[(
∇ϕQϕ(Z=z)

)
ℓ(ϕ, x, z) + Qϕ(Z=z) ∇ϕℓ(ϕ, x, z)

]

For the right-hand side of Eq. 7, we obtain (using the product rule),

∇ϕ

(
Ez∼Qϕ(Z)

[
ℓ(ϕ, x, z)

])
= ∇ϕ

(∑
z

Qϕ(Z=z) ℓ(ϕ, x, z)
)

=
∑

z
∇ϕ

[
Qϕ(Z=z) ℓ(ϕ, x, z)

]
=
∑

z

[(
∇ϕQϕ(Z=z)

)
ℓ(ϕ, x, z) + Qϕ(Z=z) ∇ϕℓ(ϕ, x, z)

]
.

Thus, left-hand side and right-hand side match, and ĝ(z) is an unbiased gradient
estimate. ■

(b) It turns out that Eq. 12 can be simplified: we don’t need ĝ(2)(z). Show that

Ez∼Qϕ(Z)
[
ĝ(2)(z)

]
= 0. (14)

Hint: Insert ĝ(2)(z) = −∇ϕ log Qϕ(Z=z) into Eq. 14 and write out the expectation
again as a weighted average. Then use again the derivative of the logarithm,
simplify, pull “∇ϕ” out of the sum, and use the fact that Qϕ(Z) is normalized.

Solution: We’ll do the derivation again for discrete Z.

Ez∼Qϕ(Z)
[
ĝ(2)(z)

]
= −

∑
z

Qϕ(Z=z) ∇ϕ log Qϕ(Z=z)

= −
∑

z
Qϕ(Z=z) ∇ϕ Qϕ(Z=z)

Qϕ(Z=z)

= −
∑

z
∇ϕ Qϕ(Z=z) = −∇ϕ

(∑
z

Qϕ(Z=z)
)

= −∇ϕ(1) = 0.

Note: terms like ĝ(2)(z) that vanish in expectation can still be useful as so-called
control variates that reduce gradient noise (Ranganath et al., 2014), thus speeding
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up convergence of SGD. For any unbiased gradient estimate ĝ(z), we can obtain a
whole family of unbiased gradient estimates ĝα(z) := ĝ(z)+αf(z) where α ∈ R and
f(z) satisfies EQϕ(Z)[f(Z)] = 0. We can then choose α by minimizing the gradient
variance EQϕ(Z)

[
(ĝα(Z) − g)2

]
. Here, g is the true gradient, which one does not

need to know as the minimization is equivalent to minimizing EQϕ(Z)
[
ĝα(Z)2

]
. ■
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