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Problem 8.1: Understanding the ELBO

In the lecture, we introduced the evidence lower bound (ELBO),
ELBO(¢,x) := Eq, ()| log P(Z, X =x) — log Q4(Z)|. (1)

Here, P(Z,X) = P(Z)P(X |Z) models a generative process with latent variables Z and
observed variables (i.e., the message) X. Further, Q4(Z) is the variational distribution,
which has variational parameters ¢.

This problem will give you some intuition for the ELBO. Let’s assume for simplicity
that both Z and X are discrete. We showed in the lecture that the ELBO is then the
negative expected net bit rate of bits-back coding with the approximate posterior Q,(Z),

ELBO(¢,x) = —Eq Ry (x|s)] (2)

where s is a random bit string (“side information”) from which we decode with the
model Q4(Z) in bits-back coding. Eq. 2 motivated us to maximize the ELBO over the
variational parameters ¢ (as this is equivalent to minimizing the expected net bit rate):

¢ = arg m(?x ELBO(¢, x). (3)

You'll now show three different ways in which maximizing the ELBO is usually motivated
in the (non-compression) literature.

(a) The term Eq,(z)[—log Qy(Z)] on the right-hand side of Eq. 1 is the entropy Hg,[Z]
of Z under the variational distribution. Thus, we can express the ELBO as follows,

ELBO(¢,x) = Eq,(z)| log P(Z, X =x)| + Hg,|Z]. (4)

(i) Imagine the entropy term Hg,[Z] was absent, i.e., pretend that we maximize
only the first term on the right-hand side of Eq. 4. Argue (in words) that
setting ¢* = argmax, EQd)(Z){log P(Z,X = x)} would make the resulting
distribution @Q4«(Z) deterministic, i.e., there would be some z* such that
Qp(Z=2z") =1 and Q4 (Z#2z") = 0 (assuming that this distribution is part
of the variational family). What is the value of z*?
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(b)

(ii) Now let’s return to the full expression in Eq. 4 that includes the entropy term
Hg,|Z]. Argue why this entropy term acts against the variational distribution
becoming deterministic (hint: what is the entropy of such a deterministic
distribution that puts all its probability mass on a single value?).

Show that the ELBO from Eq. 1 can also be expressed as follows,
ELBO(¢,%) = Eq,(z) | log P(X=x|Z)] - Dx1.(Qs(Z) | P(Z)). (5)

(Hint: it’s easier to start with Eq. 5 and derive Eq. 1 from it rather than trying it
the other way round.)

Eq. 5 tells us that maximizing the ELBO over ¢ can be interpreted as reqularized
maximum, likelihood estimation. To see this, answer the following two questions
(no calculation required): what distribution Q+(Z) would we get if we maximized

(i) only the first term on the right-hand side of Eq. 5; or
(ii) only the second term on the right-hand side of Eq. 57

In reality, we maximize over the sum of both terms, and so Q4+(Z) interpolates
between (i) and (ii). Which of the two terms in Eq. 5 can be seen as a regularizer?

Show that the ELBO from Eq. 1 can also be expressed as follows,
ELBO(g,x) = log P(X =x) — Dk1.(Qs(Z) | P(Z| X =x)), (6)

(Hint: it’s again easier to start with Eq. 6 and derive Eq. 1 from it rather than
trying it the other way round.)

(i) Assume, for now, that the variational family Q = {Q,}, contains all prob-
ability distributions over Z, and that the generative model P is fixed (we’ll
discuss how to learn the generative model next week). What would be the
optimal variational distribution Q4-(Z) that maximizes the right-hand side
of Eq. 67 Maximizing the ELBO is called “variational inference” because it
is related to Bayesian inference. Can you explain what the relation is?

(ii) In practice, the variational family Q is only a subset of all probability distribu-
tions over Z. Since we maximize the ELBO only over variational distributions
from Q, the resulting optimal variational distribution Qg«(Z) will typically
be somewhat different from what you found in (i). This mismatch will lead
to an overhead in the expected net bit rate when we use QQ4+(Z) for bits-back
coding (see Eq. 2). Which term in Eq. 6 expresses this overhead?



Black-Box Variational Inference (BBVI)

Problems 8.2 and 8.3 below discuss two methods for maximizing the ELBO (Eq. 1)
numerically. The most efficient way to maximize the ELBO is the so-called coordinate
ascent variational inference (CAVI) algorithm (see, e.g., review by Blei et al. (2017)).
While this algorithm is extremely fast (and should therefore be preferred whenever
possible!), its application is limited to generative models and variational families where
relevant parts of the expectation ELBO(¢,x) = EQd)(Z){log P(Z,X=x) — log Q(b(Z)}
can be evaluated analytically, and where one can then analytically solve equations of
the form Vj, ELBO(¢,x) = 0. This would essentially forbid the use of neural networks.

Mainstream adoption of variational inference only occurred after the invention of so-
called black box variational inference (BBVI), which replaces analytic calculations of
integrals over z by numerical estimates based on samples z ~ (QQ4(Z), and analytic
solutions of the equation V,, ELBO(¢,x) = 0 by stochastic gradient descent (SGD). As
discussed in the lecture, SGD requires an unbiased gradient estimate §(z) that we can
calculate from one (or more) samples z ~ QQ4(Z) and that satisfies

E,q,)|0(2)| = Vs ELBO(¢, %) = V (EZNQM (o, x, z)}) (7)
where ¢(¢,x,2) is the expression in the expectation in Eq. 1, i.e.,
U(p,x,2) =log P(Z,X=x) — log Qy»(Z) (8)

We saw in the lecture that obtaining an unbiased gradient estimate for the ELBO is
nontrivial since the distribution Q4(Z) from which we draw z in Eq. 7 itself depends
on ¢, and so the gradient estimate has to take into account that changing ¢ also changes
which samples z we obtain. In Problems 8.2 and 8.3 below, you’ll derive two solutions
to this issue.



Problem 8.2: BBVI With Reparameterization Gradients

Assume, for example, that z € R? lives in some continuous space of dimension d, and
that the variational family is the set of all fully factorized normal distributions, i.e., the
variational distribution @), ~(Z) has a probability density function

d
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Here, the means p = (ui)le and standard deviations o = (a,-)fl:1 together comprise
the variational parameters ¢ over which we maximize the ELBO, and N denotes the
so-called normal distribution, which has the density function
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(a) Convince yourself that, for such a variational distribution, the ELBO can be ex-
pressed as follows,

ELBO(M? g, X) = IE“ZNQMC,(Z) V(HH 0,X, Z)] = IEew/\/'(O,I) {g(.u’a g,X, ,U,—FO'G)G)} (11)

where N (0, I) is the d-dimensional standard normal distribution (i.e., with mean 0
and standard deviation 1 in each direction), and ® is elementwise multiplication.

(b) Using Eq. 11, come up with a gradient estimate G(e) that satisfies Een0,1) [g(e)] =
V.o ELBO(p, 0, %) (no calculation required; your result should fit into half a line).

(c) The code below is taken verbatim from the paper “Black-Box Stochastic Varia-
tional Inference in Five Lines of Python” (Duvenaud and Adams, 2015). Convince
yourself that it implements the right-hand side of Eq. 11. Identify each function
argument and local variable with a mathematical symbol on this problem set.

def lower_bound(variational_params, logprob_func, D, num_samples):
# variational_params: the mean and covariance of approximate posterior.

# logprob_func: the unnormalized log-probability of the model.
# D: the number of parameters in the model.
# num_samples: the number of Monte Carlo samples to use.

# Unpack mean and covariance of diagonal Gaussian.
mu, cov = variational_params[:D], np.exp(variational_params[D:])

# Sample from multivariate normal using the reparameterization trick.
samples = npr.randn(num_samples, D) * np.sqrt(cov) + mu

# Lower bound is the exact entropy plus a Monte Carlo estimate of energy.
return mvn.entropy (mu, np.diag(cov)) + np.mean (logprob (samples))

# Get gradient with respect to variational params using autograd.
gradient_func = grad(lower_bound)

Note: the function npr.randn draws samples from the standard normal N (0, I),
and mvn. entropy calculates Hg,[Z] analytically to reduce gradient variance. There
seems to be a typo in the return statement: logprob should be logprob_func.



Problem 8.3: BBVI With Score Function Gradients

While the reparameterization gradients from Problem 8.2 can be generalized beyond a
normal distribution, they don’t exist for all variational distributions, in particular not for
discrete Z (unless an approximation is used (Jang et al., 2016; Maddison et al., 2016)).
For such variational distributions, one can use the more general score function gradient
estimates (aka the “REINFORCE method” (Ranganath et al., 2014)),

i(z) = §"(2) + 3% (2) (12)
where
§V(2) = (Vo log Qy(Z=2)) U(¢, %, 2)
§P(2) == Vyl(9,x,2) = =V, log Qy(Z=2)
with £(¢,x,2) defined in Eq. 8.

(13)

(a) Show that §(z) is an unbiased gradient estimate of the ELBO, i.e., it satisfies Eq. 7.

Hint: write out the expectations on both sides of Eq. 7 as a weighted average:
Esnquzl ] = X,Q¢(Z=2)[---]. On the left-hand side, use V¢log f(§) =
%Vg f(&) for g (z); on the right-hand side, pull “V,” into the sum and use the
product rule of differential calculus. Then compare both sides term by term.

(b) Tt turns out that Eq. 12 can be simplified: we don’t need §®(z). Show that
Eznq,(2) [ﬁ(Q) (z)} = 0. (14)

Hint: Tnsert §'®(z) = —Vlog Qs(Z=z) into Eq. 14 and write out the expectation
again as a weighted average. Then use again the derivative of the logarithm,
simplify, pull “V,” out of the sum, and use the fact that Q,(Z) is normalized.
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