Solutions to Problem Set 9 o eusseld:

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tiibingen

Course materials available at https://robamler.github.io/teaching/compress23/

Note: The two problems on this set can be solved independently and in arbitrary order.

Problem 9.1: Variational Autoencoder

The jupyter notebook vae-lossless-bitsback.ipynb contains our toy variational au-
toencoder (VAE) from the lecture. This problem is designed to guide you through the
existing implementation. You won’t yet implement any new code in this problem.

(a) Data set: always acquire some basic understanding of the data set that you deal
with before you start implementing any fancy models. Here, we have 28 x 28-pixel
black and white images of handwritten digits (binarized MNIST). Let’s get an
upper bound on how much information one of these images contains. We could
trivially store it as a string of 28 x 28 bits, but we can certainly do better if we take
the probability distribution of the underlying data generative process into account.

We can’t formally specify the true data generative process because it involved
humans who wrote digits by hand at some point. But we do have a data set of
samples from the data generative process, and we can fit a simple probabilistic
model to these samples. The data set is split into a training set (train_set) and
a test_set, where train_set.datal[n, i, j] € {0,1} denotes whether the pixel
at horizontal position i € {0,...,27} and vertical pisition j € {0,...,27} in the

n'™ image of the training set is black or a white (analogously for the test_set).

Consider a model P,(X) where the random variable X = (XZ-J)?;:O denotes a
single image, which is composed of 28 x 28 pixels X; ; € {0, 1}. To obtain a very
simple baseline, we model all pixels X, ; as i.i.d. (independent and identically dis-
tributed). Thus, P,(X) = [I;; P.(X;;) factorizes, with the same marginal distri-
bution P,(X; ;) at every position (i, j). Let’s parameterize this distribution with a

single parameter « € [0, 1] such that P, (X; ;=1) = a and thus P,(X;;=0) = 1—a.

(i) Which model parameter o* € [0, 1] minimizes the total information content
under P, of all images in the train_set?” You should be able to formally
derive an extremely simple and easily interpretable expression for a*.

Solution: The information content of a single image x is — log, P,(X=x) =
—logy [1; j Pu(Xij=i5) = — 2 j1ogy Po(X;;=1m;;), which separates into a
sum over pixels because of the independence assumption. Thus, each white
pixel contributes —log, P, (X;;=1) = —log, a bit to the total information

https://robamler.github.io/teaching/compress23/

content, and each black pixel contributes —log, P, (X; ;=1) = —log,(1 — «)
bit to the total information content. We therefore find

total inf. content = — #(white pixels) log, o — #(black pixels) log,(1 — «)

where #(white/black pixels) denotes the total number of white or black pixels
in the training set, respectively. We find the optimal model parameter a* by
setting the derivative to zero,

) #(white pixels) #(black pixels)
= V,(total inf. tent = —
0= Va(total inf. con en)‘a:a* a*In?2 * (1—a*)In2
#(white pixels)

= o = :
“ #(white pixels) + #(black pixels)

Thus, within the constraints of an i.i.d. model, the optimal choice to model
the probability that a given pixel is white (within the training set, see (ii)
below) is the empirical frequency of white pixels in the training set. |

Find the section “Problem 9.1 (a): Trivial Baselines” in the notebook. Read
it, make sure you understand it, and execute the cells. This section fits the
i.i.d. model and a slightly more general model to the training set and evaluates
the information content of the training and test set under these two models.
Why do you get a lower bit rate for the more general model?

Solution: The more general model is also fully factorized, but it allows
the marginal distributions P(Xj ;) to be different for each position (4, j) in
the 28 x 28 grid. This model class contains our simpler i.i.d. model as a
special case. Therefore, the best fitting i.i.d. model cannot fit better (and
will typically fit worse) than the best model from the more general class.

The notebook also evaluates both fitted models on the test set, i.e., it calcu-
lates the cross entropy H (Pmodel; Prest) between the model and the empirical
distribution in the test set. Note that fitting the more general model naively
would lead to an infinite cross entropy due to overfitting. Apparently, there is
at least one position (7, j) at which all training images have the same color but
at least one test image has the opposite color. Naively fitting the model would
turn P(X; ;) for this position (4, j) into a deterministic distribution that puts
zero probability mass on the unlikely color. When the unexpected color is
then observed in the test set, it has an information content of —log,(0) = oco.

To avoid overfitting, we regularize the model by pretending that there was one
additional black and one additional white pixel in the training set for each
(1,7)-position. This can be interpreted as a so-called Dirichlet prior with
concentration parameter 2. To estimate the influence of this regularization
on the empirical results, note that (i) the training set consists of 60,000 im-
ages, so adding two “mock” data points changes empirical frequencies by less
than 10™%; and (ii) we empirically obtain quite similar bit rates on the training
and test set, so the model does not seem to overfit. |

(b) Entropy Bottleneck: on Problem Set 8, you derived several equivalent formula-
tions of the evidence lower bound (ELBO). One of them expressed the ELBO as
a regularized maximum likelihood estimation,

ELBO(0, ¢,) = Eq,)| log Py(X=x|2)| — Dk (Qs(Z|X=x)| P(2)) (1)

where we slightly changed the notation to follow conventions in the literature for
amortized variational inference. The regularizer (second term on the right-hand
side of Eq. 1) is the KL-divergence from the prior P(Z) to the variational distribu-
tion Qy(Z | X=x). In our VAE, we can calculate this KL-divergence analytically
because both prior and likelihood are normal distributions: P(Z) = N(0,) and
Qs(Z]| X=x) = N(M¢(x), diag <0¢(x)%, oy 04(%)2)) Wikipedia states' that the
KL-divergence between two k-dimensional normal distributions is:

P (NO H Nl) - ;(tr <21_120> —k+ (1= p0)" T (1 — p1o) +In (32: g;))
(2)

(i) Translate Eq. 2, which was copied verbatim from Wikipedia, to our specific
setup and simplify as much as possible. You should be able to express the
result as a sum over terms that don’t contain any matrices or expensive
matrix-operations like determinants.

(ii) Find the definition of the class EntropyBottleneck in the notebook and
compare the implementation of its method forward to your result from (i).

Solution: In the Wikipedia article, the notation N; for i € {0,1} denotes a
k-dimensional normal distribution N (p;, ;) with mean p; € R and covariance
matrix 3; € R¥*. The KL-divergence in Eq. 1 sets Ny to Q4(Z| X =x) and N to
the prior P(Z). We thus have k = n and

fo = Py (X);

20 = diag (0503, 70 (x)2)
1 = 0;

21 =1].

Thus, we find for each of the three main terms on the right-hand side of Eq. 2,
tr (EIIEO) = tr (diag (a(b(x)%, .)) Z os(x)3;

(Ml — MO)TEII (Ml - Mo) 1 (%) g (x Z fig(x

[aam) = (M) Em@)

'https://en.wikipedia.org/wiki/Kullback-Leibler_divergence#Multivariate_normal_
distributions

https://en.wikipedia.org/wiki/Kullback-Leibler_divergence#Multivariate_normal_distributions
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence#Multivariate_normal_distributions

Inserting these terms into Eq. 2 and expressing k = n as > ; 1, we finally find

D Q1 X=) [P(B)) = 5 52 a1l 1 (o))

i=1

which mirrors exactly the implementation in the class EntropyBottleneck:

1 class EntropyBottleneck(nn.Module):

...

def forward(self, q mean, q_log variance):
"miReturns $KL(Q(Z|X=z) || P(Z))§."""
q_variance = q_log_variance.exp()
return 0.5 * torch.sum(
q_variance - 1 + q_mean**2 - q_log variance)

Important: always check if results of derivations are plausible. The earlier you look
for simple mistakes like sign errors the easier you’ll find them. In our result, the

term fi4(x)? acts like a “weight decay’
from becoming too large; the terms oy (x);

)

regularizer that prevents posterior means

2 and —In(o,(x)?) are opposing forces

where the former prevents posterior variances from becoming too large whereas
the latter prevents posterior variances from becoming too small (and thus the
variational distribution from collapsing to a delta-peak). The stationary point

satisfies 0 = ﬁ[ad,(x)? —In (ad,(x)?)} = 204(x); — 206(0i o, os(x); =1, ie.,

o(x)?

it sets the posterior variance to the prior variance, as expected. |

(c) Encoder Model and Decoder Model: let’s understand how the notebook
implements the expected log likelihood (first term on the righ-hand side of Eq. 1).

(i)

The expectation Eq,z)[- -] is estimated by sampling z ~ Q4(Z), using the
reparameterization trick discussed in Problem 8.2. Find the definition of
the class EncoderModel in the notebook and make sure you understand its
method reparameterize.

We use a fully factorized likelihood Py(X |Z=z) = [1; ; Py(X;; | Z=2z) where
Py(Xij=1|Z=2) = 0(&,;(z)) with the sigmoid function o(a) = =
Here, &y, (z) € R (called “logit”) is the (i, j)-th output of a neural network
with input z and weights 6. Show that 1 — o(a) = o(—«). Then look up
the class DecoderModel in the notebook and make sure you understand the

implementation of the method log likelihood.

Solution:
1 _(1—1—6*"‘)—1_ e
1+e 1+ e« Cl4e o er41

l—0o(a)=1 o(—a).

The implementation of DecoderModel.log_likelihood(self, logits, x)
sums up log P(X;; = 1) = 0(&,,(z)) for each position (7,j) where the

pixel z;; has value 1, and log P(X;; =0) = 1 — 0(&.(z)) = 0(—&p.;(2))
for each position (7, j) where the pixel z;; has value 0 (it also sums over all
images in the current minibatch). [|

(d) Tying it all together: find the definition of the function bit_rates_and_logits
in the notebook and make sure you understand it. Identify the first two return
values (bit_rate_z and bit_rate_x_given_z) with corresponding terms on the
right-hand side of Eq. 1, then explain why we want to minimize their sum (as
implemented in the function train_one_epoch in the next cell).

Solution: The variable bit_rate_z holds the return value of entropy_bottleneck,
which is the KL-divergence from the prior to the variational distribution (second
term on the right-hand side of Eq. 1). The variable bit_rate_x_given_z holds the
negative return value of decoder_model.log_likelihood,i.e., —log P(X=x|Z=1z)
where z is a random sample from P(Z). This value is thus an estimate of the
expected negative log likelihood under the variational distribution (negative of
the first term on the right-hand side of Eq. 1). Thus, the sum bit_rate_z +
entropy_bottleneck is an estimate of the negative ELBO, and we can use its
gradient with respect to € and ¢ as an unbiased gradient estimate of the negative
ELBO, which we want to minimize in variational expectation maximization.

In Problem TODO below, we show that bit_rate_z and entropy_bottleneck
estimate the (net) bit rate for encodingz and x, respectively. This explains their
names and also motivates why we minimize the sum of these two quantities. W

Problem 9.2: Lossless Compression With a Variational
Autoencoder and Bits-Back Coding

In this problem, you will use the toy Variational Autoencoder (VAE) that we imple-
mented in the lecture to actually compress some data. Execute all cells in the section
titled “Part 1”7 in the notebook to train the model. This takes about 10 minutes. While
the model is training, familiarize yourself with Part 2 of the notebook.

(a) Problem Setup: locate the definition of the function test_compression in the
notebook. This function defines the task that we want to achieve. The argument
images is a tensor that contains multiple images, which the function all encodes
into a single bit string by calling encode_single_image for each image. After
reporting the observed bit rate (in bits per pixel, BPP), the function decodes from
the bit string by calling decode_single_ image multiple times, and it verifies that
all images were recovered without errors. Make sure you understand this setup.

(b) Bits-back Encoder: The function encode_single_image is already implemented
for you. It is annotated with three comments of the form “BITSBACK EN-
CODER STEP i: (description)” where ¢ € {1,2,3}. Remind yourself that these

10

11

12

13

14

15

16

17

18

19

20

21

22

comments describe the three steps of bits-back coding (see also the table in Prob-
lem 7.1 (a)). Then read the function body and make sure you get the general idea.
Don’t bother understanding all the transformations by (un)scale z(...) and
(un)quantize_scaled_z(...) yet. We'll discuss this in Parts (d) and (e) below.

Bits-back Decoder: Now fill in the gaps marked “TODO” in the function
decode_single_image in the cell below. Test your implementation by running
test_compression and compare the empirical bit rates to the estimates that were
reported during model training.

Hint: here’s how to encode/decode some symbols with the constriction library:

« if the model is already fully specified, such as quantized_prior:
ans_coder.encode_reverse(symbols, quantized_prior)
symbols = ans_coder.decode(quantized_prior, count)

o if the model has free parameters, such as bernoulli or quantized_gaussian:

ans_coder.encode_reverse(symbols, model, paramsl, params2, ...)
symbols = ans_coder.decode(model, paramsl, params2, ...)

This encodes/decodes len(params1) symbols, where, for the i® symbol, the
model parameters are (params1[i], params2[i], ...).

Solution: See accompanying jupyter notebook or code below:

def decode_single_image(ans_coder, z_shape, bits_back=True):
num_z_items = np.prod(z_shape)

BITSBACK DECODER STEP 1: decode z using model P(Z)
quantized_scaled_z = ans_coder.decode(
quantized prior, num_z_items)
quantized_scaled_z = quantized_scaled_z.reshape(z_shape)
z = unscale_z(unquantize_scaled_z(quantized_scaled_z))
z = GRID_SPACING * quantized_scaled_z.astype(
np.float32) .reshape(z_shape)

BITSBACK DECODER STEP 2: decode x using model P(X/Z=z)

logits = decoder_model (torch.tensor(z))
prob_x = decoder_model.pixel probabilities(logits)
prob_x = prob_x.detach() .cpu() .numpy()

int_image = ans_coder.decode(bernoulli, prob_x.ravel())
int_image = int_image.reshape(prob_x.shape) [0]
image = torch.tensor(int_image.astype(np.float32))

BITSBACK DECODER STEP 3: encode z using model Q(Z/X=z)
if bits_back:
q_mean, q_log var = encoder_model (image [None])

23
24
25
26
27
28
29

30

(d)

q_std = torch.exp(0.5 * q_log_var)
scaled_q_mean = scale_z(q_mean.detach().cpu() .numpy())
scaled_q_std = scale_z(q_std.detach().cpu() .numpy())
ans_coder.encode_reverse(
quantized_scaled_z.ravel(), quantized_gaussian,
scaled_q mean.ravel(), scaled_q_std.ravel())

return image

Quantizing latent space: let’s now understand what the functions (un)scale z
and (un)quantize_scaled_z do. Two of the three bits-back steps encode or
decode a latent representation z. However, in our VAE, z is a real-valued vector.
We cannot losslessly compress arbitrary real values because R is uncountable, i.e.,
there is no injective mapping from R to the (countable) set of bit strings.

To work around this limitation, we approximate the random variable Z by a dis-
crete random variable Z that we obtain by rounding each vector component of Z
to the nearest integer multiple of some fixed scalar GRID_SPACING. Thus, 7 takes
only discrete values on an evenly spaced grid G := {Z : 2;/GRID_SPACING € Z Vi}.
Convince yourself that, if Z has PDF p under some model P, then, Vz € G,

P(Z=2)= | p(z)dz 3)

V(z)

2
GRID_SPACING centered at the grid point z.

where V(2) 1= [z — 2 X GRID_SPACING,Z + 5 x GRID_SPACING| is a cube of size

Hint: Recall that random variables are defined as functions from some sample
space) to some value space. Thus, if Z : O — R? for some dimension d, then
Z:Q — G with Z(w) = [Z(w)]; where [- |; denotes rounding to the nearest point
in the grid G. We defined the notation P(Z=2) as the probability of the event
E:={weQ: Z(w) =2} What can you say about Z(w) for all w € E?

Solution: As hinted, we defined P(Z=%) := P(E) with the event F :=
{we Q: Z(w) =2}. Since Z(w) results from rounding Z(w) to the nearest point
in G, the statement Z(w) = z means that z is the grid point in G that is closest
to Z(w). This holds iff Z(w) € V(2). Thus, F = {w € Q: Z(w) € V(2)} and thus,

P(Z=2)=P(E) = P({w € Q: Z(w) € V(&)}) = /v p(z) dz

where p is a probability density function for P(Z). [|

Quantizing to integers: the constriction library that we use for entropy
coding here provides adapters that approximate arbitrary probability densities by

quantizing according to Eq. 3. However, the library always quantizes to integers
rather than to integer multiples of some given GRID_SPACING. This shouldn’t be
an issue though since we can simply define yet another random variable

Z := |(1/GRID_SPACING) X Z| _, (4)

which scales Z by 1/GRID_SPACING before rounding each component to an integer.

The functions scale_z and quantize_scaled_z implement the scaling and round-
ing from Eq. 4, respectively. The functions unscale_z and unquantize _scaled_z
implement the respective inverses (as far as inverting is possible). Read their def-
initions, then read the function encode_single_image again and make sure you
understand why the (un)scaling and (un)quantizing is done at each point. Then
explain why we also scale q_mean to scaled_q_mean and q_std to scaled_q_std
at the beginning of encode_single_image (but we don’t need to quantize these).

Solution: The constriction library quantizes to the grid Z¢, i.e., given a
probability density function p, it obtains a probability mass function

P(Z=7) = / p(2)dz Vel
-]

However, our goal is not to encode z € Z¢ with the probability mass function P(Z).
Instead, we want to encode z € G with the probability mass function P(Z) defined
in Eq. 3. Thus, we need to (i) bijectively map between z and z and (ii) find a
probability density function § such that P(Z=2) = P(Z=z) for all matching z
and z. The mapping (i) is given by z = (1/GRID_SPACING) X z since it maps the
coordinates of z € G, which are all integer multiples of GRID_SPACING, to integers.
To find p, we start from Eq. 3 and transform the integral over V(z) on the right-

hand side into an integral over #—}, 7%+ | by substituting z = GRID_SPACING x 7,

P(Z=3) = / p(z) dz (5)

V()
— GRID_SPACING? / iy p(GRID_SPACING X z') dz’ (6)
2—5.2+t5
= .. b(Z)dZ = P(Z=%) (7)
[2—3.2+3]

where we identified the probability density function
p(z') = GRID_SPACING” p(GRID_SPACING x Z').
Thus, if P(Z) is a normal distribution with mean g and covariance matrix ¥, i.e.,

if its density function is

p() = ————exp |~ S(a =) 57)

\/det(27Y0)

then we obtain for p,

§) = ————exp [~ () ()7 =)

\/det(27X)

with g/ = (1/GRID_SPACING) x g and ¥’ = (1/GRID_SPACING?) x ¥, i.e., a normal
distribution whose means and standard deviations are scaled by (1/GRID_SPACING)
(recall that ¥’ has the square of the standard deviations on its diagonal). |

Generalization Performance: the last section of the notebook allows you to
explore how both the VAE itself and your compression method generalizes to a
different data set with images that have different dimensions than the training
images. It is meant to demonstrate that fully convolutional model architectures
naturally generalize to arbitrary image dimensions. In practice, VAEs for image or
video compression are often trained on random patches of images for performance
reasons, and then deployed on larger images.

Execute the cells in Part 3 of the notebook and enjoy the fruit of your labor.
Solution: See accompanying notebook. Note that the VAE has a higher bit rate

(even per pixel) on the kanji data set than on MNIST. But so do the baselines, so
it seems like kanji just have more information per pixel than Arabic numerals. B

	Variational Autoencoder
	Lossless Compression With a Variational Autoencoder and Bits-Back Coding

