
Problem Set 10 published: 28 June 2023
discussion: 5 July 2023

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tübingen
Course materials available at https://robamler.github.io/teaching/compress23/

Problem 10.1: Beta Variational Autoencoder (β-VAE)
Consider a variational autoencoder (VAE) with a Gaussian likelihood Pθ,β(X | Z=z) =
N (gθ(z), β

2 I).1 Here, the mean gθ(z) of the normal distribution is the output of a neural
network gθ with (learnable) weights θ, and the scalar hyperparameter β > 0 is held fixed
during training. We denote the variational distribution by Qϕ(Z | X) as usual, where ϕ
are the (learnable) weights of an encoder network (aka “inference network”) fϕ.

(a) For now, we don’t make any assumption about the variational family. Show that
maximizing Ex∼training set

[
ELBO(θ, ϕ, x)

]
over the neural network weights ϕ and θ

is equivalent to minimizing a rate/distortion trade-off

Lβ(θ, ϕ) := Ex∼training set
[
D(θ, ϕ, x) + β R(θ, ϕ, x)

]
(1)

with the
• distortion D(θ, ϕ, x) := Ez∼Qϕ(Z|X=x)

[
||gθ(z) − x||22

]
; and the

• rate R(θ, ϕ, x) := DKL
(
Qϕ(Z | X=x)

∣∣∣∣∣∣Pθ(Z)
)
.

(b) We now consider a box-shaped variational distribution with fixed width 1, i.e.,

Qϕ(Z | X=x) =
d∏

i=1
U
(
Zi;

[
fϕ(x)i − 1

2 , fϕ(x)i + 1
2

])
(2)

where d is the dimensionality of Z-space, and U(Zi; [a, b]) denotes that the vector
component Zi is uniformly distributed over the interval [a, b] (i.e., its probability
density function (pdf) qϕ,i(zi | X=x) has a constant positive value for zi ∈ [a, b]
and is zero for zi /∈ [a, b]). Denote the pdf of the prior Pθ(Z) by pθ and show that

R(θ, ϕ, x) = Ez∼Qϕ(Z|X=x)
[

− log pθ(z)
]

= Ez∼Qϕ(Z|X=x)

−
d∑

i=1
log pθ,i(zi)

 (3)

where the last equality assumes that the prior Pθ(Z) = ∏d
i=1 Pθ(Zi) is fully factor-

ized with a pdf pθ,i for each component zi.

1Early versions of the lecture notes had the covariance matrix mistakenly as 1
β I instead of β

2 I.

1

https://robamler.github.io/teaching/compress23/

(c) Let’s now fully embrace the rate/distortion interpretation of the loss Lβ(θ, ϕ).
Thus, we abandon the probabilistic interpretation of the encoder and decoder
model and focus instead on the deterministic functions fϕ and gθ that map from
image space to latent space and vice versa, respectively. Our goal is to eventually
use the trained model for lossy data compression.
In deployment, we round each component zi of z := fϕ(x) to the nearest integer,
ẑi := ⌈zi⌋ ∈ Z. We then entropy code each ẑi using the probability mass function
P (Ẑi = ẑi) =

∫ ẑi+ 1
2

ẑi− 1
2

pθ,i(zi) dzi, thus obtaining a bit rate of − log P (Ẑi = ẑi).

During training, we replace the nondifferentiable rounding operation by sampling
from the box-shaped distribution in Eq. 2 (Ballé et al., 2017): z ∼ Qϕ(Z | X=x).
Everything else should stay as close as possible to the situation during deployment.
Therefore, we replace the pdf pθ,i(zi) on the right-hand side of Eq. 3 with

p̃θ,i(zi) :=
∫ zi+ 1

2

zi− 1
2

pθ,i(z′
i) dz′

i (4)

so that the resulting rate term R(θ, ϕ, x) resembles as closely as possible the bit rate
that we obtain when we entropy code with the model P (Ẑi = ẑi) =

∫ ẑi+ 1
2

ẑi− 1
2

pθ,i(zi) dzi

during deployment.
Assume that

pθ,i(zi) = N (zi; 0, σ2
i) = 1√

2πσ2
i

e−z2
i /(2σ2

i) (5)

is a normal distribution with zero mean and (learnable) variance σ2
i . Show that

p̃θ,i(zi) = 1
2

[
erf
(

zi + 1
2√

2 σi

)
− erf

(
zi − 1

2√
2 σi

)]
(6)

where the error function is defined as

erf(ξ) := 2√
π

∫ ξ

0
e−t2 dt. (7)

2

Problem 10.2: Lossy Compression With a β-VAE
The accompanying jupyter notebook implements a toy beta variational autoencoder
(β-VAE) that can be used for lossy data compression. It is very similar to the VAE
implementation that we looked at last week for lossless compression. But I removed all
parts that were specific to lossless compression. Your task is to replace these parts with
the appropriate code to implement the β-VAE from Problem 10.1 (b) above.

Search for “TODO” in the notebook to find all places where you have to do something.
(a) EntropyBottleneck: we use a prior Pθ(Z) that is a normal distribution with mean

zero and diagonal covariance matrix whose components are learned. To avoid
committing to a specific image size at training time, our encoder and decoder
networks are fully (de)convolutional, and the learned standard deviations of the
prior are the same at every spacial position (but different for every channel, i.e.,
last index of Z). Most of this is already implemented for you, but there are about
two missing lines of code in the method forward where you need to fill in the
implementation of p̃θ,i(zi) from Eq. 6.

(b) EncoderModel: since our box-shaped variational distribution (Eq. 2) has a fixed
width, the encoder network only outputs its mean q_mean := fϕ(x). This is
already implemented for you in the method forward. Implement the method
reparameterize, which draws a sample from Qϕ(Z | X=x) (see hints in the code).

(c) DecoderModel: implement the method distortion, which estimates D(θ, ϕ, x)
from Problem 10.1 (a). Here, the method argument reconstruction is gϕ(z).

(d) bit_rate_and_reconstruction: this method executes a round trip from (a batch
of) original images x to latent representations z to reconstrutions x′. Most of this
is already implemented for you. But one line of code is missing, and there is also
one line of code that I removed from the VAE implementation in the last problem
set (see comment in the code). Fill in the missing line of code and explain why the
removed line of code does not apply to our interpretation of lossy compression.

(e) Rate/distortion curves: all the boilerplate code for the training loop is already
implemented for you. Train the VAE once with β = 0.1 and z_channels = 2
as already indicated in the code and verify that all reported values are plausible
(ask yourself what bit rates or distortions would be implausible; what baseline can
you compare to?). Then try out various values for β and z_channels and plot
rate/distortion curves as indicated in the notebook.

(f) Deployment in a lossy compression pipeline: Once you’ve trained a model with rea-
sonable settings for β and z_channels, you can use it for lossy data compression.
The function encode_single_image is already implemented for you. Implement
the function decode_single_image by following the instructions in the comment.
Then run test_compression as indicated in the cells below and compare the em-
pirical bit rates and distortions to the estimates that you obtained during training.
Can you explain why there are some small discrepancies?

3

Problem 10.3: Data Processing Inequality
In this problem, you will prove a fundamental theorem of communication systems: the
data processing inequality. This inequality will become crucial for the theory of lossy
compression, and for channel coding theory.

Consider a Markov chain X1 → X2 → · · · → Xn (see Lecture 4 and Problem Set 5),
i.e., random variables X1, . . . , Xn whose joint distribution factorizes as follows,

P (X1, X2, . . . , Xn) = P (X1) P (X2|X1) P (X3|X2) · · · P (Xn|Xn−1)
(for a Markov chain X1 → X2 → · · · → Xn).

(8)

As discussed on Problem Set 5, a Markov chain models a memoryless process, i.e., a
chain of stateless stochastic operations where each stochastic operation takes as input
only the output of the immediately preceding operation. For example, think about kids
at a birthday party who play a game of telegraph (German: “Flüsterpost”).

The data processing inequality makes two statements about how information propa-
gates through such a Markov chain:

• Information about a fixed past i can only decrease along a Markov chain:

IP (Xi; Xj) ≥ IP (Xi; Xk) ∀ i < j < k (for Markov chains). (9)

• Information about a fixed future k can only increase along a Markov chain:

IP (Xi; Xk) ≤ IP (Xj; Xk) ∀ i < j < k (for Markov chains). (10)

.

The following steps guide you through the proofs of Eqs. 9 and 10.

(a) In order to relate Eqs. 9-10 to their respective verbal statements, recall why the
mutual information IP (X; Y) can be interpreted as a measure of how much infor-
mation Y gives us about X and vice versa. This was discussed in Problem 4.4 (c)
on Problem Set 4 and in the paragraph marked “Interpretation” below it.

(b) Consider a Markov chain of length n ≥ 3. Recall that, if we pick three items
Xi, Xj, and Xk in order (i.e., with i < j < k), then they form a Markov chain
Xi → Xj → Xk (if this is not obvious to you, then refer back to Problem 5.2 (b) (ii)
on Problem Set 5). Thus, P (Xi, Xj, Xk) = P (Xi)P (Xj|Xi)P (Xk|Xj).

(c) Use IP (X; Y) = HP (Y) − HP (Y |X) (see Problem 4.4 (c)) to derive a relation

IP (Xj; Xk) − IP (Xi; Xk) = EP

[
− log2

(
P (X?|X?)
P (X?|X?)

)]
(11)

where each “?” is either i, j, or k.

4

(d) Use Jensen’s inequality (see Problem 3.1 (b)) to pull the logarithm in Eq. 11 out
of the expectation. Then write out the expectation as a weighted average (using
the fact that P (Xi, Xj, Xk) = P (Xi)P (Xj|Xi)P (Xk|Xj)) and prove Eq. 10.

(e) To prove Eq. 9, recall that the statement “Xi → Xj → Xk is a Markov chain” is
equivalent to the statement “Xi and Xk are conditionally independent given Xj”
(see Problem 5.1 (a)). Use the symmetry of conditional independence to argue
that Xk → Xj → Xi is then also a Markov chain and therefore Eq. 9 holds.

(f) What is information? The data processing inequality can be interpreted as
follows: assume we feed some input data X1 into some (possibly nondeterministic)
machine that processes the data and outputs X2, and we then feed X2 (but not X1)
into some other (possibly nondeterministic) machine that outputs X3. Using the
interpretation of the mutual information reviewed in part (a), the data processing
inequality Eq. 9 then tells us that any information about X1 that gets destroyed
by the first machine cannot be regenerated by the second machine.
Think about what this means for the interpretation of our notion of “information”.
How well does our formal notion of the “information content” capture what we
would colloquially consider as “information”? For example, think about a cryp-
tographic pipeline X1 → X2 → X3 where X1 is a clear text message, X2 is the
encrypted representation of X1, and X3 is the decrypted message (thus, X3 = X1).
What does Eq. 9 imply about IP (X1; X2)?
Or think about a crime scene, where the perpetrator first destroys as much evidence
as they can, and the police then recover some of it. How much information about
the crime do the police unveil, according to our very specific notion of information?
These considerations should be a reminder that information theory uses a very
specific notion of the term “information”. In particular, this notion of information
does not take into account a computational model or other physical constraints,
which is a crucial difference between information theory and cryptography.
The term “information” is used in information theory as a metaphor. In the same
way in which no physicist would claim that their notion of the term “power” (energy
transferred per time) bears any meaning about the notion of “power” in a political
context, we should also never forget that technical terms like “information” (or
also “intelligence”) are used in information theory (or artificial intelligence) only as
metaphors, and that this specific choice of words is, to some degree, a meaningless
historical coincidence.

References
Ballé, J., Laparra, V., and Simoncelli, E. P. (2017). End-to-end optimized image com-

pression. International Conference on Learning Representations.

5

	Beta Variational Autoencoder (-VAE)
	Lossy Compression With a -VAE
	Data Processing Inequality

