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Note: This week’s tutorial will be replaced by Lucas Theis’ talk. The two short prob-
lems below are meant to be discussed in small groups in the lecture before the talk.

Problem 12.1: Recovering the Lossless Limit
In the last lecture, we considered a lossless compression pipeline X → S → X′, and we
stated that the expected bit rate is bounded by the rate/distortion curve,

EP [bit rate] ≥ R(D) with R(D) := inf
P (X′|X):

EP [d(X,X′)]≤D

IP (X; X′). (1)

Here, d(x, x′) ≥ 0 quantifies how much a reconstruction x′ differs from the original
message x, and D specifies how much distortion we accept in expectation.

What do you get for R(D) in the limit of lossless compression, D = 0, assuming that
d(x, x′) = 0 if and only if x = x′? Interpret your result.
Solution: From the theory of lossless compression, we expect to find R(0) = HP (X).
Indeed, for D = 0, the infimum on the right-hand side of Eq. 1 only runs over the single
mapping P (X′ | X) where X′ = X. For this mapping, we find

IP (X; X′) = HP (X) − HP (X | X′)︸ ︷︷ ︸
= 0 for X = X′

= HP (X).

■

Problem 12.2: The Noisy Parking Disk
This problem is meant to provide some intuition for the optimal channel coders we
constructed in the last lecture. The problem is an adaptation of the “noisy typewriter”
example from the MacKay book (see link on the course website).

We defined the capacity C of a memoryless channel P (Y | X) = ∏k
i=1 P (Yi | Xi),

C := sup
P (Xi)

IP (Xi; Yi). (2)

Consider a memoryless channel where both the inputs Xi ∈ X and the outputs Yi ∈ Y are
integers from one to twelve, i.e., X = Y = {1, 2, . . . , 12}. Picture these twelve numbers
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arranged in a circle, like they are on an analog clock or a parking disc. Transmitting a
symbol xi ∈ X goes as follows: the sender points to the number xi on the circle, and the
receiver reads off the indicated number as yi. Unfortunately, the sender has very thick
fingers, and therefore the receiver might confuse the indicated number with one of its
immediate neighbors. More precisely,

P (Yi =yi | Xi =xi) =


1
3 if yi ∈ {xi ⊖ 1, xi, xi ⊕ 1}
0 otherwise

(3)

where “⊖” and “⊕” denote subtraction and addition that wraps around the circle.

(a) Show that the channel capacity is C = 2 bits.
Hint: express the mutual information as IP (Xi; Yi) = HP (Yi) − HP (Yi|Xi). Why
does it suffice to maximize only HP (Yi)? What is the maximum entropy HP (Yi) of
a random variable Yi ∈ Y? Notice that you don’t need to find the optimal input
distribution P (Xi) to derive the capacity C here.

Solution: Expressing the mutual information as IP (Xi; Yi) = HP (Yi)−HP (Yi|Xi),
we find that, for the particular channel in Eq. 3, HP (Yi|Xi) = log2(3) is indepen-
dent of the input distribution P (Xi). Therefore, maximizing IP (Xi; Yi) is equiva-
lent to maximizing HP (Yi). We obtain a maximum value of HP (Yi) = log2(12) if
P (Yi) is a uniform distribution, which is indeed easy to achieve, e.g., by making
P (Xi) uniform (see part (b) below). Therefore, we have

C = sup
P (Xi)

IP (Xi; Yi) = sup
P (Xi)

[
HP (Yi) − log2(3)

]
= log2(12) − log2(3) = log2(4) = 2.

Thus, according to the channel coding theorem, it should be possible to commu-
nicate 2 bits of information per channel invocation. The channel coding theorem
only guarantees that this is possible with arbitrarily small probability of error in
the limit of long messages. But we’ll see in part (c) below that, for this particular
channel, we can in fact achieve the channel capacity with zero probability of error
and for arbitrarily short (even-length) bit strings. ■

(b) Show that one possible input distribution that maximizes IP (Xi; Yi) in Eq. 2 is a
uniform distribution, i.e., P (Xi =xi) = 1

12 ∀xi ∈ X .

Solution: In principle, there are two ways how one can calculate the IP (Xi; Yi)
for a given input distribution P (Xi)

(i) calculate the marginal output distribution, P (Yi) = ∑
Xi

P (Xi) P (Yi | Xi),
and then calculate IP (Xi; Yi) = HP (Yi) − HP (Yi | Xi); or

(ii) perform Bayesian inference to calculate P (Xi | Yi) = P (Xi) P (Yi | Xi)∑
Xi

P (Xi) P (Yi | Xi)
, and

then calculate IP (Xi; Yi) = HP (Xi) − HP (Xi | Yi).
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In this particular example, both approaches are feasible. We’ll use approach (i)
here since we already noted that HP (Yi | Xi) = log2(3) in part (a) above. Due
to the symmetry of the channel, it is easy to see that, for uniform P (Xi), also
P (Yi) is uniform and thus HP (Yi) = log2(12). Thus, we indeed have IP (Xi; Yi) =
HP (Yi) − HP (Yi | Xi) = log2(12) − log2(3) = 2 = C. ■

(c) While a uniform input distribution P (Xi =xi) = 1
12 ∀xi ∈ X does maximize the

mutual information IP (Xi; Yi), designing a channel code that uses all possible input
values xi ∈ X is somewhat difficult in practice. Luckily, the uniform distribution
is not the only input distribution that maximizes the mutual information for the
noisy parking disc channel. Can you come up with some very simple channel
encoder P (X | S) and channel decoder P (S′ | Y) that admit perfect reconstruction
of all possible inputs s ∈ {0, 1}k, and that allow you to transmit exactly 2 bits per
channel invocation?
Hint: You don’t need any fancy theorems here. Just think simple: how can you
avoid ambiguities on the receiver side given the specific form of the channel in
Eq. 3?

Solution: The simplest solution is to partition the symbol space X into 4 sub-
sets of three consecutive numbers each, e.g., X = {1, 2, 3} ∪ {4, 5, 6} ∪ {7, 8, 9} ∪
{10, 11, 12}. If we send the center digit of any of these subsets (i.e., 2, 5, 8, or 11)
over the channel, then the channel output is guaranteed to be from the same sub-
set, and thus the decoder can uniquely recover the input. Thus, we propose the
following deterministic channel encoder and decoder for bit strings s of length 2:
the encoder maps s ∈ {0, 1}2 to C(s) where

C(“00”) = 2; C(“01”) = 5; C(“10”) = 8; C(“11”) = 11.

The decoder receives yi ∼ P (Yi | Xi =C(s)) and maps it to the bit string C−1(yi),

C−1(1) = C−1(2) = C−1(3) = “00”; C−1(7) = C−1(8) = C−1(9) = “10”;
C−1(4) = C−1(5) = C−1(6) = “01”; C−1(10) = C−1(11) = C−1(12) = “11”.

If we want to transmit longer bit strings then we simply use these channel coders
and the channel multiple times. ■
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